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Abstract. In this paper, a fractional-order model for the spread of pests in tea plants is presented. 
This model consists of three components: tea plant, pest, and predator. The stability of the boundary 
and positive fixed points is studied. The global stability properties of the positive equilibrium point 
are also investigated. In addition, fractional Hopf bifurcation conditions for the model are proposed. 
The generalized Adams-Bashforth-Moulton method is used to solve and simulate the system of 
fractional differential equations. 
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1   Introduction 

Camellia sinensis is a tree or small shrub that belongs to the family Theaceae. It is grown for its leaves, 
which are used to make tea, an aromatic beverage. This alternate-branching plant produces matte-green 
elliptical leaves with a leathery texture and a serrate margin. Although the tea plant can grow to 
become a tree with a bowl-shaped canopy, it is generally smaller and shrub-like as a consequence of 
cultivation and pruning. Flowering is prevented in tea plants meant for tea cultivation. When they are 
allowed to flower, tea plants produce fragrant white flowers singly or in small clusters. Tea trees can 
grow to 15 m (49 ft) in height in the wild and can have a life expectancy of 30 to 50 years. [15, 31]. 

Because of their potential applications in science and engineering, interest in fractional calculus and 
fractional differential equations has grown dramatically in recent decades [9, 19, 28]. In this paper, we 
consider the fractional-order model for a tritrophic model consisting of tea plant, pest, and predator. We 
give a detailed analysis of the asymptotic and global stability of the model. To solve and simulate the 
system of fractional differential equations, we use the Adams-Bashforth-Moulton algorithm. 

2   Model Formulation 

The tritrophic food chain model for usefulness of biocontrol of pests in tea can be written as a set of 
three coupled nonlinear ordinary differential equations as follows [22]: 
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The above model has three populations. The host (tea plant) whose population density at time t  is 
denoted by X , the pest whose population density is denoted by Y  and the predator whose population 
density is denoted by .?Z d  denotes the death rate of the pests, m is the conversion rate of the pests, p  is 
the quantity that represents the decrease in the growth rate of the pests due to predator attack, q  is 
the rate of increase of predator population, K  is the carrying capacity, r  denotes the intrinsic growth 

68
Advances in Analysis, Vol. 1, No. 2, October 2016 

https://dx.doi.org/10.22606/aan.2016.12002 

AAN Copyright © 2016 Isaac Scientific Publishing

mailto:essonny19@gmail.com


rate constant and µ  denotes the intrinsic mortality rate of the predators. Here all the parameters 
, , , , , ,r K b a d m q  are positive [22]. 
Fractional order models are more accurate than integer-order models as fractional order models allow 

more degrees of freedom. Fractional differential equations also serve as an excellent tool for the 
description of hereditary properties of various materials and processes. The presence of memory term in 
such models not only takes into account the history of the process involved but also carries its impact to 
present and future development of the process. Fractional differential equations are also regarded as an 
alternative model to nonlinear differential equations. In consequence, the subject of fractional differential 
equations is gaining much importance and attention. For some recent work on fractional differential 
equations, see [19, 28]. Now we introduce fractional order into the ODE model by Maiti et al [22]. The 
new system is described by the following set of fractional order differential equations: 
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  (2.2) 

where tDα  is the Caputo fractional derivative. Because model (2.2) monitors the dynamics of human 
populations, all the parameters are assumed to be non-negative. Furthermore, it can be shown that all 
state variables of the model are non-negative for all time 0t ≥  (see, for instance, [5]). 

Lemma 2.1. The solutions of the system (2.2) exist in 3
+  and uniformly bounded. 

proof. Let ( ) ( ) ( )( ), ,X t Y t Z t  be any solution of the system (2.2) with positive initial conditions. 
Since 
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by Lemma 9 of [20] we have 
 ( ) ( ) ( )0X t X E rtαα≤  

where Eα  is the Mittag-Leffler function. Let 
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where { }    , ,k min r d µ= . By Lemma 9 of [20] again, we have 

 ( ) ( ) ( ) ( )( ) ( ) ( ), 1 1
20 , , 0 , 0 , 0 rmW X Y Z W X Y Z E kt E kt W
b

α α
α α α +≤ ≤ − + − =   (2.4) 

where Eα  is the Mittag-Leffler function. Therefore, all solutions of the model (2.2) with initial 
conditions in Ω  s.t. 
 ( ){ }1Ω , , : 0X Y Z W W W= ∈ ≤ ≤  

remain in Ω  for all    0t > . Thus, region Ω  is positively invariant with respect to model (2.2).          �   
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In the following, we will study the dynamics of system (2.2). 

3   Equilibrium Point and Stability 

In the following, we discuss the stability of the commensurate fractional ordered dynamical system: 
 ( ) ( )1 2 3, , ,    0,1 ,    1 3t i iD x f x x x iα α= ∈ ≤ ≤   (3.1) 

Let ( )* * *
1 2 3, ,E x x x=  be an equilibrium point of system ( )3.1  and *

i i ix x η= +  where iη  is a small 
disturbance from a fixed point. Then 
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System (3.2) can be written as: 
 tD Jαη η=   (3.3) 

where ( )1 2 3, ,
T

η η η η=  and J  is the Jacobian matrix evaluated at the equilibrium points. Using 
Matignon’s results [23], it follows that the linear autonomous system ( )3.3  is asymptotically stable if 

( ) 2
arg απλ >  is satisfied for all eigenvalues of matrix J  at the equilibrium point ( )* * *

1 2 3  , ,E x x x= . If 

( ) 1 2 3³ ² ,x x a x a x aφ = + + +  let ( ) D φ  denote the discriminant of a polynomial  φ , then 

 ( ) ( )
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Following [1, 2, 3, 23], we have the proposition. 

Proposition 3.1. One assumes that E  exists in 3 R+ . 
1. If the discriminant of ( )xφ , ( )D φ  is positive and Routh-Hurwitz are satisfied, that is, ( ) 0D φ > , 

1 0a > , 3 0a > , 1 2 3a a a> , then E  is locally asymptotically stable. 
2. If ( ) 0D φ < , 1 0a > , 2 0a > , 1 2 3a a a= , )0,1α ∈  , then E  is locally asymptotically stable. 

3. If ( ) 0D φ < , 1 0a < , 2 0a < , 2
3

α > , then E  is unstable. 

4. The necessary condition for the equilibrium point  E , to be locally asymptotically stable, is 3 0a > . 
To evaluate the equilibrium points, let 
 0tD Xα = , 0tD Yα = , 0tD Zα =  
Then: 
1. The first trivial equilibrium point is ( )0 0,0,0E = . The point 0E  always exists. 

The Jacobian matrix ( )0J E  for the system given in (2.2), evaluated at 0 E , is as follows: 

 ( )0

0 0
0 0
0 0

r
J E d

µ

 
 

= − 
 − 
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Theorem 3.2. The trivial equilibrium point 0E  of system (2.2) is a saddle point. 
proof. The trivial equilibrium point 0E  is locally asymptotically stable if all the eigenvalues 0iλ , 

1,2,3i =  of ( )0J E  satisfy Matignon’s conditions. The eigenvalues corresponding to the equilibrium 0E  
are 01 rλ = , 02 dλ = −  and 03 λ µ= − . 

Then we have 01 0λ > , 02 0λ <  and 03  0λ < . It follows that the node equilibrium point of system (2.2) 
is a saddle point, with nonempty stable manifolds and an unstable manifold.                                  �  
2. The second equilibrium point is ( )1 ,0,0E K=  when the pests are absent from the tea, in this case 

( )0Y Z= = ; therefore, the tea is fully susceptible. The point 1E  always exists. 

Theorem 3.3. For the system (2.2), the basic reproduction number is 

 
( )0

 mKR
d a K

=
+

 

proof. We use the next generation method to find the basic reproduction number for the system (2.2). 
When we rewrite the equations by which classes of the pest population Y  and the predator population 
Z  first and then the rest of the equations, we have the following: 
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  (3.4) 

We make matrices  ,f v , such that the system (3.4) has the form 

 ( ) ( )dx f x v x
dt

= −  

where 
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We make matrices F ,V  such that 

 ( ) ( )
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2 22 2
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ZZ
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YYF x V x
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and then 

 ( ) ( )0 ,   
0

mX d pZ pY
F x V xa X

qZ qY µ

   + = =+       

 

at the equilibrium point ( )1 ,0,0E K= , to get the eigenvalues of 1F V −⋅  one solves the equation 

 1 0F V Iλ−⋅ − =  

where λ  is the eigenvalues and I  is the identity matrix. Then 
( )1

 mK
d a K

λ =
+

, 2 0λ = . It then follows 

that the spectral radius of the matrix 1F V −⋅  is ( ) ( )1 max iF Vρ λ−⋅ = , 1,2i = . Then 
( )0

 mKR
d a K

=
+

.�   
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3. By (2.2), the third point is 
( ) ( )
( )

0      1  , ,0
²

r amd a K RadE
m d Kb m d

 + −
 =
 − − 

₂ , which is free of the predator. 

4. The fourth point is ( )3 3 3 3, ,E X Y Z=  where 
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3
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1
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Y
q
R K m d a m d

Z
p R K a

KbR K a
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µ

µ
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+ − − +
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+ +
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Remark 1.  
1) The free pest, whose population density is denoted by Y  does not exist. The predator Z , being a 

natural enemy of the concerned pest, preys on Y  and only on Y . So if 0Y = , then it should be 
that 0Z =  is the free equilibrium point 1E  again. 

2) 2E  must have a nonnegative component, then the following condition exists: m d>  and 0 1R > . 
3) 3E  must have a nonnegative component, then the following condition exists:     arq b µ> , 

( ) ( ) ( )R K m d a m d+ − > + . 
The Jacobian matrix ( )1J E  for the system given in (2.2), evaluated at 1E , is as follows: 

 ( ) ( )1 0

  0

0 1 0
0 0

bKr
a K

J E d R
µ

 
− + 

= − 
 

− 
  

 

Theorem 3.4. The equilibrium point 1E  is unstable. 
Proof. The equilibrium point 1E  is locally asymptotically stable if all the eigenvalues, 0iλ , 1,2,3i =  of 
the Jacobian matrix ( )1J E  satisfy the following condition [1, 2, 3, 10, 12, 13, 17, 18, 24, 25, 26]: 

 ( )1arg .
2i
απλ >  

The eigenvalues of the characteristic equation of ( )J E₁ are 11 rλ = − , ( )12 0 1d Rλ = −  and 13 λ µ= − . 
Hence 0E  is not locally asymptotically stable (since 1E  exists, it must be 0 1R > ; then 12 0λ > ).       �   

We now discuss the asymptotic stability of a positive equilibrium point 2E  of the system given by 
(2.2). The Jacobian matrix ( )2J E  evaluated at a positive equilibrium is given as follows: 
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2 2 2 2
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rX bX Y
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The characteristic equation of ( )2J E  as follows: 

 ( ) ( )2
2 0qY B Cλ µ λ λ+ − − + =  

where 

( ) ( )2 0

2   

rd a K X a K R K
B

amK

 + + − =  and 
( )

2 2
3

2

  0
abmX Y

C
a X

= >
+

 

For the characteristic equation (3.7), the roots are 21 2qYλ µ= −  and 22λ , 2
23

1 4
2

B B Cλ  = ± −  
. 

Theorem 3.5. The equilibrium point 2E  of system (2.2) is locally asymptotically stable if and only if all 
the following conditions are satisfied: 
i) 2 0qY µ− <  

ii) 0  KR
a K

<
+

 and 

iii) 2 cos
2

B C απ 
<  

 
. 

Proof.  It is clear that ( )2 2jarg απλ > , 2,3j = , if and only if the conditions (ii) and (iii) hold.          �  

Theorem 3.6. With respect to system (2.2), if 2 0qY µ− < , the following statements can be obtained: 

(a) If 0
KR

a K
≤

+
, the equilibrium 2E  is locally asymptotically stable, for any ( )  0,1α∈ . 

(b) If 0 2B C< < , the equilibrium 2E  is locally asymptotically stable if and only if ( )*0,α α∈ , where 

* 12 cos
2
B
C

α
π

−  
=   

 
. 

(c) If 2B C≥ , the equilibrium 2E  is unstable for any ( )0,1α ∈ . 

Proof. The conclusions (a) and (c) are obvious. For the statement (b), due to 0 2B C< < , the 

equation (3.5) has two complex roots 22λ , 23λ , and their real part is 0
2
B

> . Then ( )2 jarg λ =

1cos
2
B
C

−  
  
 

, 2,3j = . Based on the condition 
*

1cos
22

B
C

α π−  
=  

 
, ( )*0,α α∈  if and only if ( )2arg jλ

2
απ

> , 2,3j = , it is concluded that Theorem 3.6 is true.                                                            �  

It can be concluded from the statements of Theorem 3.5 and Theorem 3.6 that the positive 
equilibrium is locally asymptotically stable if and only if ( )*0,α α∈ . At *α α=  a Hopf bifurcation is 
expected to occur. As increases above the critical value *α , the positive equilibrium is unstable, and a 
limit cycle is expected to appear in the proximity of 2E  due to the Hopf bifurcation phenomenon. 

The analysis of periodic solutions in fractional dynamical systems is a new research topic that is 
generating great interest. Thus far, research indicates that exact periodic solutions in time invariant 
fractional systems are nonexistent. In terms of its application, the limit cycle detected in numerical 
simulations of a simple fractional neural network cannot represent an exact periodic solution of the 
system. Other research studies have also provided numerical evidence of limit cycles. 

Remark 2. As of yet, there is no evidence of the existence of exact periodic solutions in autonomous 
fractional systems[29, 30]. However, numerical simulations have revealed limit cycles in many types of 
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systems, including a fractional neural system[18], a fractional Van der Pol system[6], the fractional 
Chua and Chen systems[7], and a fractional financial system[4]. 

We now discuss the asymptotic stability of the positive equilibrium point E₃ of the system given by 
(2.2). The Jacobian matrix ( )3J E  is given as follows: 

( )
( )

( )

3 3 32
2

33

3
3 32

3

3

0

0

0 0

bX Y bXrX
K a Xa X

maY
J E pY
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 
 

= − 
+ 

 
 
 
 

. 

Theorem 3.7. The interior equilibrium point 3E  is locally asymptotically stable. 
Proof. The characteristic equation of ( )3J E  is as follows: 

 3 2 0A B Cλ λ λ+ + + =  
where 
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2

2

0
rRX

A
K a X
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+
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2 2
2 23
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B pqY Z

a X
= +

+
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2 2 2

2

  0,
rpqX Y Z

C
K a X
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and 

 
( )

2
2 2

4

2

0.
rabmRX Y

AB C
K a X

∆ = − = >
+

 

According to the Routh-Hurwitz criterion, we have 0A > , 0C >  and 0∆ > , therefore, 2E  is locally 
asymptotically stable.                                                                                                          �  

Since 3E  is locally stable in the region Ω , we will use Volterra-type Lyapunov functions (Lemma 3.1) 
to show in the following theorem[30]. 

Theorem 3.8. The interior equilibrium point 3E  is globally asymptotically stable. 
Proof. A positive definite function ( ), ,V X Y Z  is defined as 

 ( ) 3 3 3 3 3 3
3 3 3

ln l, , n ln ,X Y ZV X Y Z M X X X Y Y Y N Z Z Z
X Y Z

     
= − − + − − + − −          
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and positive constants ,M N  will be chosen later. Then 

 ( ) 3 3 3 3 3 3
3 3 3

ln ln, .ln,t t t t
X Y ZD V X Y Z MD X X X D Y Y Y ND Z Z Z
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By applying Lemma 3.1 [30] 
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If we take
3

   0amM
ab bX

= >
+

, pN
q

=  and notice that when 3E  exists (and, consequently, is locally 

asymptotically stable), then 

 
( ) ( ) ( )

3

3

0.
bYr rX

K a X a X K a X
− > >

+ + +
 

Therefore, ( ), ,tD V X Y Zα  is negative definite, and, consequently, V  is a Volterra-type Lyapunov 
function with respect to all solutions in the interior of the positive orthant, thereby proving the theorem.                                                                                                                           
�  

4   Numerical Methods and Simulations  

Because most fractional-order differential equations lack exact analytic solutions, approximation and 
numerical techniques must be used. There exist several different analytical and numerical methods for 
solving fractional-order differential equations. For numerical solutions of system (2.2), one can use the 
generalized Adams-Bashforth-Moulton method. To give the approximate solution by means of this 
algorithm, consider the following nonlinear fractional-order differential equation [10, 11, 14, 21]: 
 ( ) ( )( ), ,0tD y t f t y t t Tα = ≤ ≤  

( ) 00 , 0,1,2,..., 1.k ky y k m= = − .  
This equation is equivalent to the Volterra integral equation: 
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 ( ) ( )

( ) ( ) ( )( )
1

1

0
0 0

1 ,
!

m tk
k

k

ty t y t s f s y s ds
k

α

α

−
−

=

= + −
Γ∑ ∫   (3.5) 

Diethelm et al. used the predictor-corrector scheme [10, 11], based on the Adams-Bashforth-Moulton 
algorithm, to integrate Eq. (4.1). By applying this scheme to the fractional-order model for a tritrophic 

model consisting of tea plant, pest, and predator, and setting , , 0,1,2,...,n
Th t nh n N Z
N

+= = = ∈  one 

can discretize Eq. (4.1) as follows: 

 

( ) ( )

( ) ( )

1 1 1
1 0 1 , 1

11

1 1
1 0 1 1 1 , 1

11

1 1
2 2

2 2
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p p n
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+ + +
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+ +
+ + + + +
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     
   = + − − + − −     ++Γ + Γ +         

 
= + − + − + − + 

+Γ + Γ +  

∑

∑

( ) ( )1 0 1 1 1 , 1
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=

 
− 

+  

   = + − + + − +  Γ + Γ + ∑

  

where 
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α α α

α+





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 = − + − − ≤ ≤  

 

5   Conclusion 

In this paper, we consider the fractional-order model for a tritrophic model consisting of tea plant, pest, 
and predator. We obtained a stability condition for equilibrium points, provided a numerical example, 
and verified our results. However, before drawing any conclusions, we must bear in mind that the 
equilibrium points are the same for both integer-order and fractional-order models, but the solution of 
the fractional-order model tends to the fixed point over a longer period of time. In addition, we must 
take into account that when dealing with real-life problems, one can determine the order of the system 
by using the collected data. Previous research has shown that the process of transforming a classical 
model into a fractional one is very sensitive to the order of differentiation α ; for instance, a small 
change in α  may result in a substantial change in the final result. From the numerical, it is clear that 
the approximate solutions depend continuously on the fractional derivative α . We used some 
documented data for several parameters, such as 1, 2, 0.9, 1, 1, 3, 1, 1r K a b d m p µ= = = = = = = =  and
  0.5q = . The approximate solutions ( ) ( ), ?X t Y t  and ( ) Z t  are displayed in Figure 1 for the order of the 
fractional derivative  0.95α = . The results show that the concentrations of tea plants, pests, and 
predators all reach their equilibrium values as time passes. An important feature of the fractional-order 
model is that it controls the speed at which the solution to equilibrium is reached. It follows from 
Theorem 3.5, that * 0.985237α = . From Theorem 3.6, it is known that when *,?α α<  the trajectories 
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converge to the equilibrium point, as shown in Figs. 1 and 2; whereas when α  is increased to exceed *α , 
the origin loses its stability, and a Hopf-type bifurcation occurs, as shown in Fig. 3. Furthermore, Fig. 3 
illustrates that the system (2.2) has a stable cycle trajectory. 

 
Figure 1. When 0.95α =  the trajectory of system (2.2) converges to the equilibrium 2E . 

 
Figure 2. When 0.97α =  the trajectory of system (2.2) converges to the equilibrium 2E . 

Advances in Analysis, Vol. 1, No. 2, October 2016 77

Copyright © 2016 Isaac Scientific Publishing AAN



 
Figure 3. When 0.99α =  the trajectory of system (2.2) converges to an asymptotically stable limit cycle. 
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