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Abstract Using the q-harmonic analysis associated with the q-Bessel operator, we study some
types of q-wavelet packets and their corresponding q-wavelet transforms. We give for these wavelet
transforms the related Plancheral and inversion formulas as well as their q-scale discrete scaling
functions.
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1 Introduction

Contrary to what is prevalent and as far as we go back in the history of mathematics, we can say that
the q-theory, also called Quantum Calculus, was initiated in 1748, when Euler undertook the study of the
basic hypergeometric functions and considered the infinite product

1
(1− q)(1− q2)(1− q3) . . .

as a generating function for p(n), the number of partitions of a positive integer n into positive integers.
But, it was not until a hundred years later that the subject acquired an independent status. This was first
systematically effected by E. Heine (1821-1881) in the middle of the nineteenth century, and the work
was subsequently greatly extended by F. H. Jackson (1870-1960), W. N. Bailey (1893-1961), L. J. Slater,
G. E. Andrews and many others up to the present day. In fact, in recent years, various families of q-series
and q-polynomials have been investigated rather widely and extensively due mainly to their having been
found to be potentially useful in such wide variety of fields as (for example) theory of partitions, number
theory, combinatorial analysis, finite vector spaces, Lie theory, particle physics, nonlinear electric circuit
theory, mechanical engineering, theory of heat conduction, quantum mechanics, cosmology and statistics.
The books and monographs by (among others) H. M. Srivastava and J. Choi [25], H. Exton [8], H. M.
Srivastava and P. W. Karlsson [26] and G. Gasper and M. Rahman [14] discussed extensively basic (or
q-) hypergeometric functions in one, two and more variables. The success of the theory began since the
1970’s, and the q-theory became an active area of research. This success was achieved thanks to the
work of G. E. Andrews and R. Askey ([1], [2]) on the orthogonal polynomials, special functions and their
q-analogues. Since then, many authors have been interested by the theory and many papers have been
published (see [9], [21], [24]). In particular, in [20], T. H. Koornwinder and R. Swarttouw studied the
third Jackson q-Bessel function and claimed that we can use it to build a reliable harmonic analysis. This
motivated and encouraged many authors to study elements of q-harmonic analysis associated to different
q-difference-differential operators and publish many papers in the subject (see [3], [4], [5], [13], [22], [23]
and references therein).
Since the classical harmonic analysis plays central role in the theory of wavelets and wavelet packets, it
is natural to ask if we can apply the q-harmonic analysis to build new wavelets and wavelets packets.
Many papers treated the notion of q-wavelets (see [10], [11], [12] and references therein) and gave some
applications using q-harmonic analysis.
In this paper, we are concerned with the notion of q-wavelet packets. We shall use the harmonic analysis
associated with the q-Bessel operator presented in [4] and [13] to study some types of q-wavelet packets
following the ideas presented in [27].

This paper is organized as follows : in Section 2, we present some notations and notions from the
quantum calculus needed in the sequel. Section 3 is devoted to recalling some elements of harmonic
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analysis associated with the q-Bessel operator. In Section 4, we introduce and study the q-Bessel wavelet
packets and its related transform. Finally, in Section 5, we introduce and study the Bessel’s q-scale
discrete scaling function and its related transform.

2 Notations and Preliminaries
We recall some usual notions and notations used in the q-theory (see [14], [19] and [[25], Chapter 6]). We
refer to the book by G. Gasper and M. Rahman [14] and [[25], Chapter 6]) for the definitions, notations
and properties of the q-shifted factorials and the q-hypergeometric functions.
Throughout this paper, we assume q ∈ [0, 1] and we denote

Rq = {±qn : n ∈ Z}, Rq,+ = {qn : n ∈ Z} and R̃q,+ = Rq,+ ∪ {0}.

For a complex number a, the q-shifted factorials are defined by:

(a; q)0 = 1; (a; q)n =
n−1∏
k=0

(1− aqk), n = 1, 2, ...; (a; q)∞ =
∞∏
k=0

(1− aqk).

We also write
[x]q = 1− qx

1− q , x ∈ C and n!q = (q; q)n
(1− q)n , n ∈ N.

The Rubin’s q-differential operator is defined in [22] and [23] by

∂q(f)(z) =


f(q−1z) + f(−q−1z)− f(qz) + f(−qz)− 2f(−z)

2(1− q)z if z 6= 0

lim
x→0

∂q(f)(x) if z = 0.
(2.1)

Note that if f is differentiable at z, then ∂q(f)(z) tend to f ′(z) as q tends to 1.

The Jackson’s q-integrals from 0 to a and from 0 to +∞ (see [18]) are given by∫ a

0
f(x)dqx = (1− q)a

∞∑
n=0

f(aqn)qn and
∫ ∞

0
f(x)dqx = (1− q)

∞∑
n=−∞

f(qn)qn (2.2)

provided the sums converge absolutely.
The Jackson’s q-integral in a generic interval [a, b] is given by∫ b

a

f(x)dqx =
∫ b

0
f(x)dqx−

∫ a

0
f(x)dqx. (2.3)

Remark that in the particular case a = bqn, n ∈ N, the relation (2.3) becomes∫ b

a

f(x)dqx = (1− q)b
n−1∑
k=0

f(qkb)qk. (2.4)

In the sequel, we will need the following sets and spaces.
• Cq,0(Rq) the space of bounded functions on Rq, which are continuous at 0 and vanishing at ∞.
• S∗,q(Rq) the space of even functions f defined on Rq satisfying

∀n,m ∈ N, Pn,m,q(f) = sup
x∈Rq

| xm∂nq f(x) |< +∞

and
lim
x→0

∂nq f(x) (in Rq) exists.

• D∗,q(Rq) the subspace of S∗, q(Rq) composed of functions with compact supports.

• Lpα,q(Rq,+) =
{
f : ‖f‖p,α,q =

(∫ ∞
0
|f(x)|p|x|2α+1dqx

) 1
p

<∞

}
, p > 0 and α ∈ R.

• L∞q (Rq,+) =
{
f : ‖f‖∞,q = sup

x∈Rq,+

|f(x)| <∞
}
.
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3 q-Bessel Fourier Transform

The normalized third Jackson’s q-Bessel function is defined by

jα(x; q2) =
+∞∑
n=0

(−1)n
Γq2(α+ 1)qn(n+1)

Γq2(α+ n+ 1)Γq2(n+ 1)

(
x

1 + q

)2n
, (3.1)

where
Γ (x) = (q; q)∞

(qx; q)∞
(1− q)1−x, x 6= 0,−2,−4,−6, . . .

is the q-Gamma function. Note that we have

jα(x; q2) = (1− q2)αΓq2(α+ 1) ((1− q)x)−α Jα((1− q)x; q2), (3.2)

where
Jα(x; q2) = xα(q2α+2; q2)∞

(q2; q2)∞
.1ϕ1(0; q2α+2; q2, q2x2) (3.3)

is the third Jackson’s q-Bessel function.
For α ≥ −1

2 ,
jα(.; q2) ∈ S∗,q(Rq)

and using the relations (3.1), we obtain

∂qjα(x; q2) = − x

[2α+ 2]q
jα+1(x; q2). (3.4)

As a consequence, we have

Proposition 1 For λ ∈ C, the function jα(λx; q2) is the unique even solution of the problem{
4α,qf(x) = −λ2f(x),

f(0) = 1, (3.5)

where 4α,q is the q-Bessel operator, given by

4α,qf(x) = 1
|x|2α+1 ∂q[|x|

2α+1∂qf(x)].

Proposition 2 For x, y ∈ Rq,+, we have

(xy)α+1
∫ +∞

0
jα(xt; q2)jα(yt; q2)t2α+1dqt =

(1 + q)2αΓ 2
q2(α+ 1)

(1− q) δx,y. (3.6)

Definition 1 The q-Bessel Fourier transform is defined for f ∈ L1
α,q(Rq,+), by

Fα,q(f)(λ) = cα,q

∫ ∞
0

f(x)jα(λx; q2)x2α+1dqx, (3.7)

where
cα,q = (1 + q)−α

Γq2(α+ 1) . (3.8)

Letting q ↑ 1 be subject to the condition Log(1− q)
Log(q) ∈ 2Z, gives, at least formally, the classical Bessel-

Fourier transform.
Some properties of the q-Bessel Fourier transform are given in the following result (see [4]).
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Theorem 1 1) For f ∈ L1
α,q(Rq,+), we have Fα,q(f) ∈ L∞q (Rq,+),

lim
λ→+∞

Fα,q(f)(λ) = 0 and ‖Fα,q(f)‖∞,q ≤
2cα,q

(q; q)∞
‖f‖1,α,q.

2) For f, g ∈ L1
α,q(Rq,+), we have∫ ∞

0
f(x)Fα,q(g)(x)x2α+1dqx =

∫ ∞
0
Fα,q(f)(λ)g(λ)λ2α+1dqλ. (3.9)

3) If f and 4α,qf are in L1
α,q(Rq,+), then

Fα,q(4α,qf)(λ) = −λ2Fα,q(f)(λ).

4) If f and x2f are in L1
α,q(Rq,+), then

4α,q(Fα,q(f)) = −Fα,q(x2f).

Proposition 3 If f ∈ L1
α,q(Rq,+), then

∀x ∈ Rq,+, f(x) = cα,q

∫ ∞
0
Fα,q(f)(λ)jα(λx; q2)λ2α+1dqλ.

Theorem 2 1) Plancherel formula
For all f ∈ S∗,q(Rq), we have Fα,q(f) ∈ S∗,q(Rq) and

‖Fα,q(f)‖2,α,q = ‖f‖2,α,q. (3.10)

2) Plancherel theorem
The q-Bessel transform can be uniquely extended to an isometric isomorphism on L2

α,q(Rq,+) with
F−1
α,q = Fα,q.

We are now in a position to define the generalized q-Bessel translation operator.

Definition 2 The generalized q-Bessel translation operator is defined for f ∈ L2
α,q(Rq,+) by

Tα;q
y (f)(x) = cα,q

∫ ∞
0
Fα,q(f)(λ)jα(λx; q2)jα(λy; q2)λ2α+1dqλ, x, y ∈ Rq,+, (3.11)

Tα;q
0 (f) = f .

It verifies the following properties.

Proposition 4

1. For all x, y ∈ Rq,+, Tα;q
y (f)(x) = Tα;q

x (f)(y).

2. For f ∈ L2
α,q(Rq,+), x, y ∈ Rq,+, we have

Fα,q(Tα;q
y f)(λ) = jα(λy; q2)Fα,q(f)(λ). (3.12)

3. If f ∈ L2
α,q(Rq,+) (resp. S∗,q(Rq)) then Tα;q

y (f) ∈ L2
α,q(Rq,+) (resp. S∗,q(Rq)) and we have

‖ Tα;q
y (f) ‖2,α,q≤

4
(q; q)∞

‖ f ‖2,α,q . (3.13)

4. For all x, y, λ ∈ Rq,+, Tα;q
y

(
jα(λ·; q2)

)
(x) = jα(λx; q2)jα(λy; q2).
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Definition 3 The q-Bessel convolution product is defined for f, g ∈ S∗,q(Rq) by:

f ∗B g(x) = cα,q

∫ ∞
0

Tα;q
x f(y)g(y)y2α+1dqy. (3.14)

In the following propositions, we present some of its properties.

Proposition 5 For f, g ∈ S∗,q(Rq), we have

1. Fα,q(f ∗B g) = Fα,q(f).Fα,q(g).

2. f ∗B g = g ∗B f .

3. (f ∗B g) ∗B h = f ∗B (g ∗B h).

Proposition 6 Let f and g be in S∗,q(Rq). Then f ∗B g ∈ Sq(Rq), and

‖f ∗B g‖2,α,q = ‖Fα,q(f)Fα,q(g)‖2,α,q (3.15)

We finish this section by the following useful result.

Proposition 7 For a ∈ Rq,+ the operator Ha defined for g ∈ L2
α,q(Rq,+) (resp. S∗,q(Rq)), by

Ha(g)(x) = 1
a2α+2 g

(x
a

)
is linear and bijective from L2

α,q(Rq,+) (resp. S∗,q(Rq)) into itself and we have

‖Ha(g)‖2,α,q = 1
aα+1 ‖g‖2,α,q (3.16)

and
Fα,q(Ha(g))(λ) = Fα,q(g)(aλ), λ ∈ R̃q. (3.17)

Proof
The linearity and the bijectivity of Ha are clear. In Particular, H−1

a = H 1
a
. The change of variables u = x

a
completes the proof of the result. �

4 q-Bessel Wavelet Packets

We recall that a Bessel’s q-wavelet is a square q-integrable function g on Rq,+ satisfying the following
admissibility condition (see [11]):

0 < Cg =
∫ ∞

0
| Fα,q(g)(a) |2 dqa

a
<∞. (4.1)

We consider a Bessel’s q-wavelet g and a strictly decreasing scale sequence (rj)j∈Z of Rq,+ satisfying
lim

j→−∞
rj = +∞, lim

j→+∞
rj = 0. We state the following introductory result.

Proposition 8 For all j ∈ Z, we have :

1. the function λ 7−→
(

1
Cg

∫ rj

rj+1

|Fα,q(Ha(g))(λ)|2 dqa
a

) 1
2

belongs to L2
α,q(Rq,+),
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2. there exists a function gPj ∈ L2
α,q(Rq,+) such that for all λ ∈ Rq,+,

Fα,q(gPj )(λ) =
(

1
Cg

∫ rj

rj+1

|Fα,q(Ha(g))(λ)|2 dqa
a

) 1
2

.

Proof
Fix j ∈ Z.
(1) On the one hand, rj and rj+1 are two elements of Rq,+ satisfying rj+1 < rj , then there exists a
positive integer n such that rj+1 = qnrj . So, using the relation (2.4) and Proposition 7, we obtain

∫ ∞
0

(
1
Cg

∫ rj

rj+1

|Fα,q(Ha(g))(λ)|2 dqa
a

)
λ2α+1dqλ = 1− q

Cg

∫ ∞
0

n−1∑
k=0
|Fα,q(g)(λqkrj)|2λ2α+1dqλ

= 1− q
Cg

n−1∑
k=0

∫ ∞
0
|Fα,q(g)(λqkrj)|2λ2α+1dqλ.

On the other hand, the change of variable u = λqkrj , ( 0 ≤ k ≤ n− 1), together with Theorem 2 leads to

∫ ∞
0

(
1
Cg

∫ rj

rj+1

|Fα,q(Ha(g))(λ)|2 dqa
a

)
λ2α+1dqλ = 1− q

Cg

n−1∑
k=0

∫ ∞
0

|Fα,q(g)(u)|2

(rjqk)2α+2 u2α+1dqu

= 1− q
Cg
‖Fα,q(g)(u)‖2

2,α,q

n−1∑
k=0

1
(rjqk)2α+2

= q2α+2

Cg[2α+ 2]q

(
1

r2α+2
j+1

− 1
r2α+2
j

)
‖g‖2

2,α,q.

(2) The result follows from Theorem 2. �

Definition 4 i) The sequence (gPj )j∈Z is called Bessel’s q-wavelet packet.
ii) The function gPj , j ∈ Z, is called Bessel’s q-wavelet packet’s member of step j.

We have the following immediate properties.

Proposition 9 For all λ ∈ Rq, we have

0 ≤ Fα,q(gPj )(λ) ≤ 1, j ∈ Z and
+∞∑
j=−∞

[Fα,q(gPj )(λ)]2 = 1.

Let (gPj )j∈Z be a Bessel’s q-wavelet packet. We introduce for all j ∈ Z and x ∈ Rq,+, the function
gPj,x as

gPj,x(y) = Tα;q
y (gPj )(x), y ∈ R̃q,+. (4.2)

Some properties of these functions are summarized in the following result and its proof follows easily from
the properties of the q-Bessel translation operator and the definition of the Bessel’s q-wavelet packets.

Proposition 10 For all j ∈ Z and x ∈ Rq,+, the function gPj,x belongs to L2
α,q(Rq,+) and we have for all

λ ∈ R̃q,+,

– Fα,q(gPj,x)(λ) = jα(λx; q2)Fα,q(gPj )(λ).

– ‖gPj,x‖2,α,q ≤
4‖gPj ‖2,α,q

(q; q)∞
.
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Definition 5 Let (gPj )j∈Z be a Bessel’s q-wavelet packet. We define the Bessel’s q-wavelet packet transform
ΨPq,g by

ΨPq,g(f)(j, y) = cα,q

∫ ∞
0

f(x)gPj,y(x)x2α+1dqx, j ∈ Z, y ∈ R̃q,+ and f ∈ L2
α,q(Rq,+), (4.3)

where cα,q is given by the relation (3.8).

Remark 1 The equality (4.3) is equivalent to

ΨPq,g(f)(j, y) = f ∗B gPj (y) = Fα,q(Fα,q(f ∗B gPj ))(y) = Fα,q[Fα,q(f).Fα,q(gPj )](y). (4.4)

The following proposition provides some useful properties of ΨPq,g.

Proposition 11 Let (gPj )j∈Z be a Bessel’s q-wavelet packet and f ∈ L2
α,q(Rq,+). Then,

1. for all j ∈ Z, b ∈ R̃q,+, we have

|ΨPq,g(f)(j, b)| ≤ 4cα,q
(q; q)∞

‖f‖2,α,q
∥∥gPj ∥∥2,α,q ;

2. for all j ∈ Z, the mapping b 7→ ΨPq,g(f)(j, b) is continuous on R̃q,+ and we have lim
b→∞

ΨPq,g(f)(j, b) = 0.

Proof
(1) From the relation (4.3), Proposition 10 and the Cauchy-Schwarz inequality, we have for j ∈ Z and
b ∈ Rq,+

|ΨPq,g(f)(j, b)| = cα,q

∣∣∣∣∫ ∞
0

f(x)gPj,b(x)x2α+1dqx

∣∣∣∣ ≤ cα,q||f ||2,α,q||gPj,b||2,α,q ≤ 4cα,q
(q; q)∞

||f ||2,α,q||gPj ||2,α,q.

(2) Let j ∈ Z and f ∈ L2
α,q(Rq,+). From Theorem 2, we have Fα,q(f) and Fα,q(gPj ) are in L2

α,q(Rq,+) and
the product Fα,q(f)Fα,q(gPj ) is in L1,α,q(Rq,+). So, the relation (4.4) together with Theorem 1 achieves
the proof. �

The following result shows Plancheral and Parseval formulas for the Bessel’s q-wavelet packet transform
ΨPq,g.

Theorem 3 Let (gPj )j∈Z be a Bessel’s q-wavelet packet.
(1) Plancheral formula for ΨPq,g
For f ∈ L2

α,q(Rq,+), we have

+∞∑
j=−∞

∫ ∞
0
| ΨPq,g(f)(j, b) |2 b2α+1dqb = ‖f‖2

2,α,q. (4.5)

(2) Parseval formula for ΨPq,g
For f1, f2 ∈ L2

α,q(Rq,+), we have∫ ∞
0

f1(x)f2(x)x2α+1dqx =
+∞∑
j=−∞

∫ ∞
0

ΨPq,g(f1)(j, b)ΨPq,g(f2)(j, b)b2α+1dqb. (4.6)

Proof
(1) From the relations (3.15) and (4.4), we obtain∫ ∞

0
|ΨPq,g(f)(j, b)|2b2α+1dqb =

∫ ∞
0
|Fα,q(f)(a)|2[Fα,q(gPj (a)]2a2α+1dqa.
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So, the use of the Fubini’s theorem and the fact that

+∞∑
j=−∞

[Fα,q(gPj )(λ)]2 = 1

give

+∞∑
j=−∞

∫ ∞
0
|ΨPq,g(f)(j, b)|2b2α+1dqb =

∫ ∞
0
|Fα,q(f)(a)|2

+∞∑
j=−∞

[Fα,q(gPj (a))]2a2α+1dqa

=
∫ ∞

0
|Fα,q(f)(a)|2a2α+1dqa.

Thus, (4.5) follows from Theorem 2.
(2) The result is a direct consequence of assertion (1). �

Theorem 4 Let (gPj )j∈Z be a Bessel’s q-wavelet packet. For f ∈ L2
α,q(Rq,+), one has the following

reconstruction formula :

f(x) = cα,q

+∞∑
j=−∞

∫ ∞
0

ΨPq,g(f)(j, b)gPj,b(x)b2α+1dqb, x ∈ Rq,+.

Proof
For x ∈ Rq,+, we have h = δx belongs to L2

α,q(Rq,+). Then, according to the relation (4.6), the definition
of ΨPq,g and the definition of the Jackson’s q-integral, we have

(1− q)x2α+2f(x) =
∞∑

j=−∞

∫ ∞
0

ΨPq,g(f)(j, b)ΨPq,g(h)(j, b)b2α+1dqb

= cα,q

∞∑
j=−∞

∫ ∞
0

ΨPq,g(f)(j, b)
(∫ ∞

0
h(t)gPj,b(t)|t|2α+1dqt

)
b2α+1dqb

= (1− q)x2α+2cα,q

∞∑
j=−∞

∫ ∞
0

ΨPq,g(f)(j, b)gPj,b(x)b2α+1dqb,

which is equivalent to

f(x) = cα,q

∞∑
j=−∞

∫ ∞
0

ΨPq,g(f)(j, b)gPj,b(x)b2α+1dqb.

�

5 Bessel’s q-Scale Discrete Scaling Function

In this section, we consider a Bessel’s q-wavelet packet (gPj )j∈Z.

Proposition 12

1. For all m ∈ Z and x ∈ Rq,+, we have

m−1∑
j=−∞

[Fα,q(gPj )(x)]2 = 1
Cg

∫ ∞
rm

|Fα,q(Ha(g))(x)|2 dqa
a
. (5.1)

34 Advances in Analysis, Vol. 1, No. 1, July 2016

AAN Copyright © 2016 Isaac Scientific Publishing



2. For all m ∈ Z, the function x 7→

 m−1∑
j=−∞

[Fα,q(gPj )(x)]2
 1

2

belongs to L2
α,q(Rq,+).

3. For all m ∈ Z there exists a function GPm in L2
α,q(Rq,+) such that for all x ∈ Rq,+,

Fα,q(GPm)(x) =

 m−1∑
j=−∞

[Fα,q(gPj )(x)]2
 1

2

. (5.2)

Proof
(1) It follows from the definition of gPj .
(2) From the Fubini’s theorem, the relation (5.1) and Proposition 7, we have∫ ∞

0

m−1∑
j=−∞

[Fα,q(gPj )(x)]2x2α+1dqx = 1
Cg

∫ ∞
0

∫ ∞
rm

|Fα,q(Ha(g))(x)|2 dqa
a
x2α+1dqx

= 1
Cg

∫ ∞
rm

(∫ ∞
0
|Fα,q(g)(ax)|2x2α+1dqx

)
dqa

a
.

By the change of variables u = ax and Theorem 2, we obtain∫ ∞
0

(
1
Cg

∫ ∞
rm

|Fα,q(Ha(g))(x)|2 dqa
a

)
x2α+1dqx = 1

Cg

∫ ∞
rm

(∫ ∞
0
|Fα,q(g)(x)|2x2α+1dqx

)
dqa

a2α+3

= ‖g‖2,α,q

Cg

∫ ∞
rm

dqa

a2α+3 <∞.

This completes the proof of (2).
(3) We deduce the result from the previous assertion and Theorem 2. �

Definition 6 The sequence (GPm)m∈Z is called Bessel’s q-scale discrete scaling function.

The sequence (GPm)m∈Z verifies the following trivial and easily proved properties.

Proposition 13
(i) For all m ∈ Z and λ ∈ Rq,+, we have

0 ≤ Fα,q(GPm)(λ) ≤ 1. (5.3)

(ii) For all λ ∈ Rq,+, we have
lim

m→+∞
Fα,q(GPm)(λ) = 1. (5.4)

Proof
The proof is an easy deduction from Proposition 9. �

Proposition 14 For m ∈ Z and x ∈ Rq,+, the following relations
(i) [

Fα,q(GPm)(x)
]2 +

∞∑
j=m

[Fα,q(gPj )(x)]2 = 1, (5.5)

(ii) [
Fα,q(gPm)(x)

]2 =
[
Fα,q(GPm+1)(x)

]2 − [Fα,q(GPm)(x)
]2
, (5.6)
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(iii)
∞∑

m=−∞

([
Fα,q(GPm+1)(x)

]2 − [Fα,q(GPm)(x)
]2) = 1 (5.7)

hold.

Proof

– (i) It follows immediately from (5.2) and Proposition 9.

– (ii) We deduce the result from the relation (5.2).

– (iii) The relation is a consequence of (5.6) and Proposition 9.

�

Now, let (GPm)m∈Z be a Bessel’s q-scale discrete scaling function and consider for all m ∈ Z, x ∈ Rq,+,
the function GPm,x is given by

GPm,x(y) = Tα,qy (GPm)(x), ∀y ∈ Rq,+. (5.8)

From the properties of the Bessel’s q-translation, one can prove easily the following result giving some
properties of the function GPm,x.

Proposition 15 For all m ∈ Z and x ∈ Rq,+, the function GPm,x belongs to L2
α,q(Rq,+) and we have

– Fα,q(GPm,x)(λ) = jα(λx; q2)Fα,q(GPm)(λ), λ ∈ Rq,+,

– ‖GPm,x‖2,α,q ≤
4‖GPm‖2,α,q

(q; q)∞
.

Definition 7 Let (GPm)m∈Z be a Bessel’s q-scale discrete scaling function. We define the Bessel’s q-scale
discrete scaling transform ΘPq,G on L2

α,q(Rq,+), by

ΘPq,G(f)(m,x) = cα,q

∫ ∞
0

f(b)GPm,x(b)b2α+1dqb, m ∈ Z, and x ∈ Rq,+. (5.9)

Remark 2 The relation (5.9) is equivalent to

ΘPq,G(f)(m,x) = f ∗B GPm(x). (5.10)

In the two following results, we will provide a Plancheral and a Parseval formulas for ΘPq,G.

Theorem 5 Let (GPm)m∈Z be a Bessel’s q-scale discrete scaling function.
(1) Plancherel formula for ΘPq,G
For f ∈ L2

α,q(Rq,+), we have

‖f‖2
2,α,q = lim

m→+∞

∫ ∞
0
|ΘPq,G(f)(m, b)|2b2α+1dqb. (5.11)

(2) Parseval formula for ΘPq,G
For f1, f2 ∈ L2

α,q(Rq,+), we have∫ ∞
0

f1(x)f2(x)x2α+1dqx = lim
m→+∞

∫ ∞
0

ΘPq,G(f1)(m, b)ΘPq,G(f2)(m, b)b2α+1dqb. (5.12)
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Proof
(1) Due to the relations (5.10) and (3.15), we have for all m ∈ Z,∫ ∞

0
|ΘPq,G(f)(m, b)|2b2α+1dqb =

∫ ∞
0
|Fα,q(f)(x)|2[Fα,q(GPm)(x)]2x2α+1dqx. (5.13)

The relations (5.3) and (5.4), and the Lebesgue’s theorem yield to

lim
m→+∞

∫ ∞
0
|ΘPq,G(f)(m, b)|2b2α+1dqb = ‖Fα,q(f)‖2

2,α,q .

Finally, Theorem 2 achieves the proof of (1).
(2) The result follows from (5.11). �

Using the Bessel’s q-scale discrete scaling function (GPm)m∈Z and the Bessel’s q-wavelet packet transform
ΨPq,g, one can obtain another Plancheral formula for ΘPq,G. This is the aim of the following result.

Theorem 6
(1) Plancherel formula for ΘPq,G using ΨPq,g
For all f ∈ L2

α,q(Rq,+), we have for all m ∈ Z,

‖f‖2
2,α,q =

∫ ∞
0
|ΘPq,G(f)(m, b)|2b2α+1dqb+

∞∑
j=m

∫ ∞
0
|ΨPq,g(f)(j, b)|2b2α+1dqb. (5.14)

(2) Parseval formula for ΘPq,G using ΨPq,g
For f1, f2 ∈ L2

α,q(Rq,+), we have for all m ∈ Z,∫ ∞
0

f1(x)f2(x)x2α+1dqx =
∫ ∞

0
ΘPq,G(f1)(m, b)ΘPq,G(f2)(m, b)b2α+1dqb +

∞∑
j=m

∫ ∞
0

ΨPq,g(f1)(j, b)ΨPq,g(f2)(j, b)b2α+1dqb.

Proof
(1) On the one hand, from the relations (5.13) and (5.2), we have for all m ∈ Z,∫ ∞

0
|ΘPq,G(f)(m, b)|2b2α+1dqb =

∫ ∞
0
|Fα,q(f)(x)|2

 m−1∑
j=−∞

[
Fα,q(gPj )(x)

]2x2α+1dqx.

On the other hand, using the relations (3.15) and (4.4), and the Fubini’s theorem, we obtain

∞∑
j=m

∫ ∞
0
|ΨPq,g(f)(j, b)|2b2α+1dqb =

∫ ∞
0
|Fα,q(f)(x)|2

 ∞∑
j=m

[
Fα,q(gPj )(x)

]2x2α+1dqx.

Hence, ∫ ∞
0
|ΘPq,G(f)(m, b)|2b2α+1dqb +

∞∑
j=m

∫ ∞
0
|ΨPq,g(f)(j, b)|2b2α+1dqb =

∫ ∞
0
|Fα,q(f)(x)|2

 ∞∑
j=−∞

[Fα,q(gPj )(x)]2
x2α+1dqx.

The result follows then from Proposition 9 and Theorem 2.
(2) The assertion (2) follows from (1). �
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Theorem 7 For f ∈ L2
α,q(Rq,+), we have the following reconstruction formulas.

(1) For all x ∈ Rq,+,

f(x) = cα,q lim
m→+∞

∫ ∞
0

ΘPq,G(f)(m, b)GPm,b(x)b2α+1dqb. (5.15)

(2) For all x ∈ Rq,+ and all m ∈ Z,

f(x) = cα,q

∫ ∞
0

ΘPq,G(f)(m, b)GPm,b(x)b2α+1dqb+ cα,q

∞∑
j=m

∫ ∞
0

ΨPq,g(f)(j, b)gPj,b(x)b2α+1dqb. (5.16)

Proof
(1) Let f ∈ L2

α,q(Rq,+), fix x ∈ Rq,+ and put h = δx. By using the relation (5.12), we get

(1− q)x2α+2f(x) = lim
m→+∞

∫ ∞
0

ΘPq,G(f)(m, b)ΘPq,G(h)(m, b)b2α+1dqb

= lim
m→+∞

cα,q

∫ ∞
0

ΘPq,G(f)(m, b)
(∫ ∞

0
h(t)GPm,b(t)dqt

)
b2α+1dqb

= lim
m→+∞

cα,q(1− q)x2α+2
∫ ∞

0
ΘPq,G(f)(m, b)GPm,b(x)b2α+1dqb.

Thus,

f(x) = cα,q lim
m→+∞

∫ ∞
0

ΘPq,G(f)(m, b)GPm,b(x)b2α+1dqb.

(2) The technique of the proof is similar to (1). �

Proposition 16 For f ∈ L2
α,q(Rq,+), one has for all j ∈ Z,∫ ∞

0
ΨPq,g(f)(j, b)gPj,b(x)b2α+1dqb =

∫ ∞
0

ΘPq,G(f)(j + 1, b)GPj+1,b(x)b2α+1dqb −∫ ∞
0

ΘPq,G(f)(j, b)GPj,b(x)b2α+1dqb.

Proof
Using the relations (5.16) and (5.6), and Theorem 2, we obtain∫ ∞

0
ΘPq,G(f)(j + 1, b)GPj+1,b(x)b2α+1dqb−

∫ ∞
0

ΘPq,G(f)(j, b)GPj,b(x)b2α+1dqb

=
∫ ∞

0
Fα,q[Fα,q(f ∗B GPj+1)](−b)GPj+1,b(x)b2α+1dqb−

∫ ∞
0
Fα,q[Fα,q(f ∗B GPj )](−b)GPj,b(x)b2α+1dqb

=
∫ ∞

0
Fα,q(f)(b)

([
Fα,q(GPj+1)

]2 − [Fα,q(GPj )
]2) (b)jα(bx; q2)b2α+1dqb

=
∫ ∞

0
Fα,q(f)(b)

[
Fα,q(gPj )

]2 (b)jα(bx; q2)b2α+1dqb

=
∫ ∞

0
ΨPq,g(f)(j, b)gPj,b(x)b2α+1dqb.

�
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