Department of Mathematics, Beijing Jiao Tong University,
No. 3 Shang Yuan Cun, Hai Dian District
Beijing 100044
P. R. China
Research Interests
Applied mathematics and theoretical physics detailedly associated with nonlinear partial differential equations, computerized symbolic computation and soliton theory with applications in shallow water waves, plasma physics, optical communication, BoseEinstein condensates and fluid dynamics.
Selected Publication List
•X. L¨u and F. H. Lin, Soliton excitations and shapechanging collisions in alpha helical
proteins with interspine coupling at higher order, Commun. Nonlinear Sci. Numer Simulat.
32 (2016) 241;
• X. L¨u, W. X. Ma, J. Yu and C. M. Khalique, Solitary waves with the Madelung fluid
description: A generalized derivative nonlinear Schr¨odinger equation, Commun. Nonlinear
Sci. Numer Simulat. 31 (2016) 40;
• X. L¨u, W. X. Ma, J. Yu, F. H. Lin and C. M. Khalique, Envelope bright and darksoliton
solutions for the GerdjikovIvanov model, Nonlinear Dyn. 82 (2015) 1211;
•X. L¨u, W. X. Ma and C. M. Khalique, A direct bilinear B¨acklund transformation of a
(2+1)dimensional Kortewegde Vrieslike model, Appl. Math. Lett. 50, (2015) 37;
• X. L¨u, Madelung fluid description on a generalized mixed nonlinear Schr¨odinger equation,
Nonlinear Dyn. 81 (2015) 239;
• X. L¨u, F. H. Lin and F. H. Qi, Analytical study on a twodimensional Kortewegde Vries
model with bilinear representation, B¨acklund transformation and soliton solutions, Appl.
Math. Modell. 39, (2015) 3221;
• X. L¨u and J. Li, Integrability with symbolic computation on the BogoyavlenskyKonoplechenko
model: Bellpolynomial manipulation, bilinear representation, and Wronskian solution,
Nonlinear Dyn. 77 (2014) 135;
• X. L¨u, Brightsoliton collisions with shape change by intensity redistribution for the coupled SasaSatsuma system in the optical fiber communications, Commun. Nonlinear Sci.
Numer Simulat. 19 (2014) 3969;
• X. L¨u, New bilinear B¨acklund transformation with multisoliton solutions for the (2+1)
dimensional SawadaKotera model, Nonlinear Dyn. 76 (2014) 161;
• X. L¨u, Soliton behavior for a generalized mixed nonlinear Schr¨odinger model with Nfold
Darboux transformation, Chaos 23 (2013) 033137;
• X. L¨u and M. S. Peng, Systematic construction of infinitely many conservation laws for
certain nonlinear evolution equations in mathematical physics, Commun. Nonlinear Sci.
Numer Simulat. 18 (2013) 2304;
• X. L¨u and M. S. Peng, Nonautonomous motion study on accelerated and decelerated
solitons for the variablecoefficient LenellsFokas model, Chaos 23 (2013) 013122;
• X. L¨u and M. S. Peng, Painlev´eintegrability and explicit solutions of the general twocoupled nonlinear Schr¨odinger system, Nonlinear Dyn. 73 (2013) 405;
• X. L¨u and B. Tian, Soliton solutions via auxiliary function method for a coherentlycoupled model in the optical fiber communications, Nonlinear Analysis: Real World Applications 14, (2013) 929;
• X. L¨u and B. Tian, Vector bright soliton behaviors associated with negative coherent
coupling, Phys. Rev. E 85, (2012) 026117;
• X. L¨u, B. Tian and F. H. Qi, Bellpolynomial construction of B¨acklund transformations
with auxiliary independent variable for some soliton equations with one Taufunction, Nonlinear Analysis: Real World Applications 13, (2012) 1130;
