联系我们
Isaac Scientific Publishing
New Horizons in Mathematical Physics
Prof. Xing Lü,  Beijing Jiao Tong University, China
Department of Mathematics, Beijing Jiao Tong University,
No. 3 Shang Yuan Cun, Hai Dian District
Beijing 100044
P. R. China
Research Interests
Applied mathematics and theoretical physics detailedly associated with nonlinear partial differential equations, computerized symbolic computation and soliton theory with applications in shallow water waves, plasma physics, optical communication, Bose-Einstein condensates and fluid dynamics.
Selected Publication List
•X. L¨u and F. H. Lin, Soliton excitations and shape-changing collisions in alpha helical proteins with interspine coupling at higher order, Commun. Nonlinear Sci. Numer Simulat. 32 (2016) 241;
• X. L¨u, W. X. Ma, J. Yu and C. M. Khalique, Solitary waves with the Madelung fluid description: A generalized derivative nonlinear Schr¨odinger equation, Commun. Nonlinear Sci. Numer Simulat. 31 (2016) 40;
• X. L¨u, W. X. Ma, J. Yu, F. H. Lin and C. M. Khalique, Envelope bright- and dark-soliton solutions for the Gerdjikov-Ivanov model, Nonlinear Dyn. 82 (2015) 1211;
•X. L¨u, W. X. Ma and C. M. Khalique, A direct bilinear B¨acklund transformation of a (2+1)-dimensional Korteweg-de Vries-like model, Appl. Math. Lett. 50, (2015) 37;
• X. L¨u, Madelung fluid description on a generalized mixed nonlinear Schr¨odinger equation, Nonlinear Dyn. 81 (2015) 239;
• X. L¨u, F. H. Lin and F. H. Qi, Analytical study on a two-dimensional Korteweg-de Vries model with bilinear representation, B¨acklund transformation and soliton solutions, Appl. Math. Modell. 39, (2015) 3221;
• X. L¨u and J. Li, Integrability with symbolic computation on the Bogoyavlensky-Konoplechenko
model: Bell-polynomial manipulation, bilinear representation, and Wronskian solution, Nonlinear Dyn. 77 (2014) 135;
• X. L¨u, Bright-soliton collisions with shape change by intensity redistribution for the coupled Sasa-Satsuma system in the optical fiber communications, Commun. Nonlinear Sci. Numer Simulat. 19 (2014) 3969;
• X. L¨u, New bilinear B¨acklund transformation with multisoliton solutions for the (2+1)- dimensional Sawada-Kotera model, Nonlinear Dyn. 76 (2014) 161;
• X. L¨u, Soliton behavior for a generalized mixed nonlinear Schr¨odinger model with N-fold Darboux transformation, Chaos 23 (2013) 033137;
• X. L¨u and M. S. Peng, Systematic construction of infinitely many conservation laws for certain nonlinear evolution equations in mathematical physics, Commun. Nonlinear Sci. Numer Simulat. 18 (2013) 2304;
• X. L¨u and M. S. Peng, Nonautonomous motion study on accelerated and decelerated solitons for the variable-coefficient Lenells-Fokas model, Chaos 23 (2013) 013122;
• X. L¨u and M. S. Peng, Painlev´e-integrability and explicit solutions of the general twocoupled nonlinear Schr¨odinger system, Nonlinear Dyn. 73 (2013) 405;
• X. L¨u and B. Tian, Soliton solutions via auxiliary function method for a coherently-coupled model in the optical fiber communications, Nonlinear Analysis: Real World Applications 14, (2013) 929;
• X. L¨u and B. Tian, Vector bright soliton behaviors associated with negative coherent coupling, Phys. Rev. E 85, (2012) 026117;
• X. L¨u, B. Tian and F. H. Qi, Bell-polynomial construction of B¨acklund transformations with auxiliary independent variable for some soliton equations with one Tau-function, Nonlinear Analysis: Real World Applications 13, (2012) 1130;
Copyright © 2020 Isaac Scientific Publishing Co. All rights reserved.