Isaac Scientific Publishing
Journal of Advances in Nanomaterials
JAN > Volume 1, Number 2, December 2016

Noise-Modulated Effects of Anisotropy and Position-Dependent Effective Mass on the Oscillator Strength of Impurity Doped Quantum Dots

Download PDF  (375.7 KB)PP. 64-72,  Pub. Date:December 20, 2016
DOI: 10.22606/jan.2016.12003

Author(s)
Sucharita Sarkar1, Arghya Pratim Ghosh2, Arkajit Mandal3, Manas Ghosh2*
Affiliation(s)
1Department of Chemistry and Biochemistry,University of Delaware, Newark, Delaware 19716, USA;
2Department of Chemistry, Physical Chemistry Section, Visva Bharati University, Santiniketan, Birbhum 731235, West Bengal, India; 3Department of Chemistry, University of Rochester , New York 14627, USA
Abstract
We study the modulation of oscillator strength (OS) of impurity doped quantum dot (QD) under the influence of geometrical anisotropy and position-dependent effective mass (PDEM) in presence and absence of noise. The OS profiles are monitored as a function of anisotropy and dopant location considering PDEM and fixed effective mass (FEM). Noise considered here is Gaussian white noise which has been administered to the system additively and multiplicatively. Always a comparison has been attempted between FEM and PDEM to understand the role of the latter on OS profiles. Application of noise has been found to affect the OS profiles only over some particular domains of anisotropy and dopant location. And use of PDEM promotes greater contribution from noise than FEM in fabricating the OS profiles. The observations reveal sensitive interplay between noise and anisotropy/PDEM to tailor the features of OS profiles which bear substantial technological importance in the study of nonlinear optical properties of doped QD systems.
Keywords
Quantum dot, impurity, Gaussian white noise, oscillator strength, geometrical anisotropy, position-dependent effective mass
References
  • [1]  B. Chen, K. -X. Guo, Z. -L. Liu, R. -Z. Wang, Y. -B. Zheng and B. Li, ”Second-order nonlinear optical susceptibilities in asymmetric coupled quantum wells”, Journal of Physics: Condensed Matter, vol. 20, no. 25, pp. 255214, 2008.
  • [2]  K. -X. Guo, T. P. Das and C. -Y. Chen, ”Studies on the electro-optic effects of double-layered quantum wires in magnetic fields”, Physica B, vol. 293, no. 1-2, pp. 11-15, 2000.
  • [3]  B. Chen, K. -X. Guo, R. -Z. Wang and Z. -H. Zhang, ”Optical second harmonic generation in asymmetric double triangular quantum wells”, Superlattices and Microstructures, vol. 45, no. 3, pp. 125-133, 2009.
  • [4]  ?. Karabulut, ”Laser field effect on the nonlinear optical properties of a square quantum well under the applied electric field”, Applied Surface Science, vol. 256, no. 24, pp. 7570-7574, 2010.
  • [5]  M. E. Mora-Ramos, C. A. Duque, E. Kasapoglu, H. Sari and I. S?kmen, ”Linear and nonlinear optical properties in a semiconductor quantum well under intense laser radiation: Effects of applied electromagnetic fields”, Journal of Luminescence, vol. 132, no. 4, pp. 901-913, 2012.
  • [6]  C. A. Duque, E. Kasapoglu, S. ?akiro?lu, H. Sari and I. S?kmen, ”Intense laser effects on nonlinear optical absorption and optical rectification in single quantum wells under applied electric and magnetic field”, Applied Surface Science, vol. 257, no. 6, pp. 2313-2319, 2011.
  • [7]  S. ?akiro?lu, F. Ungan, U. Yesilgul, M. E. Mora-Ramos, C. A. Duque, E. Kasapoglu, H. Sari and I. S?kmen, ”Nonlinear optical rectification and the second and third harmonic generation in P?schl-Teller quantum well under the intense laser field”, Physics Letters A, vol. 376, no. 23, pp. 1875-1880, 2012.
  • [8]  F. Ungan, J. C. Mertínez-Orozco, R. L. Restrepo, M. E. Mora-Ramos, E. Kasapoglu and C. A. Duque,” Nonlinear optical rectification and second-harmonic generation in a semi-parabolic quantum well under intense laser field: Effects of electric and magnetic fields”, Superlattices and Microstructures, vol. 81, no. May, pp. 26-33, 2015.
  • [9]  H. Hassanabadi, G. Liu and L. Lu, ”Nonlinear optical rectification and the second-harmonic generation in semiparabolic and semi-inverse quantum wells”, Solid State Communications, vol. 152, no. 18, pp. 1761-1766, 2012.
  • [10]   S. Yilmaz and H. ?afak, ”Oscillator Strengths for the intersubband transitions in a Cds ? SiO2 quantum dot with hydrogenic impurity”, Physica E, vol. 36, no. 1, pp. 40-44, 2007.
  • [11]  A. ?zmen, Y. Yakar, B. ?akir and ü. Atav, ”Computation of the oscillator strength and absorption coefficients for the intersubband transitions of the spherical quantum dot”, Optics Communications, vol. 282, no. 19, pp. 3999-4004, 2009.
  • [12]  B. ?akir, Y. Yakar and A. ?zmen, ”Calculation of oscillator strength and the effects of electric field on energy states, static and dynamic polarizabilities of the confined hydrogen atom”, Optics Communications, vol. 311, no. 15 January, pp. 222-228, 2013.
  • [13]  K. M. Kumar, A. J. Peter and C. W. Lee, ”Optical properties of a hydrogenic impurity in a confined Zn1? xCdxSe/ZnSe quantum dot”, Superlattices and Microstructures, vol. 51, no. 1, pp. 184-193, 2012.
  • [14]  A. Tiutiunnyk, V. Tulupenko, M. E. Mora-Ramos, E. Kasapoglu, F. Ungan, H. Sari, I. S?kmen and C. A. Duque, ”Electron-related optical responses in triangular quantum dots”, Physica E, vol. 60, no. June, pp. 127-132, 2014.
  • [15]  W. Xie, ”Impurity effects on optical property of a spherical quantum dot in the presence of an electric field”, Physica B, vol. 405, no. 16, pp. 3436-3440, 2010.
  • [16]  E. Sadeghi, ”Electric field and impurity effects on optical property of a three-dimensional quantum dot: A combinational potential scheme”, Superlattices and Microstructures, vol. 50, no. 4, pp. 331-339, 2011.
  • [17]  L. He and W. Xie, ”Effects of an electric field on the confined hydrogen impurity states in a spherical parabolic quantum dot”, Superlattices and Microstructures, vol. 47, no. 2, pp. 266-273, 2010.
  • [18]  H. T?s and M. ?ahin, ”The inter-sublevel optical properties of a spherical quantum dotquantum well with and without a donor impurity”, Journal of Applied Physics, vol. 112, no. 5, pp. 053717, 2012.
  • [19]  S. Yilmaz and M. ?ahin, ”Third-order nonlinear absorption spectra of an impurity in a spherical quantum dot with different confining potential”, Physica Status Solidi B, vol. 247, no. 2, pp. 371-374, 2010.
  • [20]  ?. Karabulut, ü. Atav, H. ?afak and M. Tomak, ”Linear and nonlinear intersubband optical¨ absorptions in an asymmetric rectangular quantum well”, European Physical Journal B, vol. 55, no. 3, pp. 283-288, 2007.
  • [21]  B. ?akir, Y. Yakar and A. ?zmen, ”Refractive index changes and absorption coefficients in a spherical quantum dot with parabolic potential”, Journal of Luminescence, vol. 132, no. 10, pp. 2659-2664, 2012.
  • [22]  B. ?akir, Y. Yakar, A. ?zmen, M. ?zgür Sezer and M. ?ahin, ”Linear and nonlinear optical¨ absorption coefficients and binding energy of a spherical quantum dot”, Superlattices and Microstructures, vol. 47, no. 4, pp. 556-566, 2010.
  • [23]  Y. Yakar, B. ?akir and A. ?zmen, ”Off-center hydrogenic impurity in spherical quantum dot¨ with parabolic potential”, Superlattices and Microstructures, vol. 60, no. August 2013, pp. 389-397, 2013.
  • [24]  B. ?akir, Y. Yakar and A. ?zmen, ”Linear and nonlinear optical absorption coefficients of two-electron spherical quantum dot with parabolic potential”, Physica B, vol. 458, no. 1 February 2015, pp. 138-143, 2015.
  • [25]  Z. Zeng, C. S. Garoufalis, A. F. Terzis and S. Baskoutas, ”Linear and nonlinear optical properties of ZnS/ZnO core shell quantum dots: Effect of shell thickness, impurity, and dielectric environment”, Journal of Applied Physics, vol. 114, no. 2, 023510, 2013.
  • [26]  R. Khordad and H. Bahramiyan, ”Impurity position effect on optical properties of various quantum dots”, Physica E, vol. 66, no. February, pp. 107-115, 2015.
  • [27]  M. Kirak, S. Yilmaz, M. ?ahin and M. Gen?asian, ”The electric field effects on the binding energies and the nonlinear optical properties of a donor impurity in a spherical quantum dot”, Journal of App lied Physics, vol. 109, no. 9, pp. 094309, 2011.
  • [28]  G. Rezaei, M. R. K. Vahdani and B. Vaseghi, ”Nonlinear optical properties of a hydrogenic impurity in an ellipsoidal finite potential quantum dot”, Current Applied Physics, vol. 11, no. 2, pp. 176-181, 2011.
  • [29]  M. R. K. Vahdani and G. Rezaei, ”Linear and nonlinear optical properties of a hydrogenic donor in lens-shaped quantum dots”, Physics Letters A, vol. 373, no. 34, pp. 3079-3084, 2009.
  • [30]  M. J. Karimi and G. Rezaei, ”Effects of external electric and magnetic fields on the linear and nonlinear intersubband optical properties of finite semi-parabolic quantum dots”, Physica B, vol. 406, no. 23, pp. 4423-4428, 2011.
  • [31]  ?. Karabulut and S. Baskoutas, ”Linear and nonlinear optical absorption coefficients and refractive index changes in spherical quantum dots: Effects of impurities, electric field, size, and optical intensity”, Journal of Applied Physics, vol. 103, no. 7, pp. 073512, 2008.
  • [32]  S. Baskoutas, C. S. Garoufalis and A. F. Terzis, ”Linear and nonlinear optical absorption coefficients in inverse parabolic quantum wells under static external electric field”, European Physical Journal B, vol. 84, no. 2, pp. 241-247, 2011.
  • [33]  S. Baskoutas, E. Paspalakis and A. F. Terzis, ”Electronic structure and nonlinear optical rectification in a quantum dot: effects of impurities and external electric field”, Journal of Physics: Condensed Matters, vol. 19, no. 39, pp. 395024, 2007.
  • [34]  W. Xie, ”Linear and nonlinear optical properties of a hydrogenic donor in spherical quantum dots”, Physica B, vol. 403, no. 23-24, pp. 4319-4322, 2008.
  • [35]  W. Xie, ”Nonlinear optical properties of a hydrogenic donor quantum dot”, Physics Letters A, vol. 372, no. 33, pp. 5498-5500, 2008.
  • [36]  T. Chen, W. Xie and S. Liang, ”Optical and electronic properties of a two-dimensional quantum dot with an impurity”, Journal of Luminescence, vol. 139, no. July 2013, pp. 64-68, 2013.
  • [37]  K. M. Kumar, A. J. Peter and C. W. Lee, ”Optical absorption and refractive index change of a confined exciton in a spherical quantum dot nanostructure” European Physical Journal B, vol. 84, no. 3, pp. 431-438, 2011.
  • [38]  R. Wei and W. Xie, ”Optical absorption of a hydrogenic impurity in a disc-shaped quantum dot”, Current Applied Physics, vol. 10, no. 3, pp. 757-760, 2010.
  • [39]  E. C. Niculescu, L. M. Burileanu, A. Radu and A. Lupa?cu, ”Anisotropic optical absorption in quantum well wires induced by high-frequency laser fields”, Journal of Luminescence, vol. 131, no. 6, pp. 1113-1120, 2011.
  • [40]  E. C. Niculescu and L. M. Burileanu, ”Nonlinear optical absorption in inverse V-shaped quantum wells modulated by high-frequency laser field”, European Physical Journal B, vol. 74, no. 1, pp. 117-122, 2010.
  • [41]  G. Rezaei, B. Vaseghi, F. Taghizadeh, M. R. K. Vahdani and M. J. Karimi, ”Intersubband optical absorption coefficient changes and refractive index changes in a two-dimensional quantum pseudodot system”, Superlattices and Microstructures, vol. 48, no. 5, pp. 450-457, 2010.
  • [42]  G. H. Wang and K. -X. Guo, ”Interband optical absorptions in a parabolic quantum dot”, Physica E, vol. 28, no. 1, pp. 14-21, 2005.
  • [43]  A. Keshavarz and M. J. Karimi, ”Linear and nonlinear intersubband optical absorption in symmetric double semi-parabolic quantum wells”, Physics Letters A, vol. 374, no. 26, pp. 2675-2680, 2010.
  • [44]  M. G. Barseghyan, M. E. Mora-Ramos and C. A. Duque, ”Hydrostatic pressure, impurity position and electric and magnetic field effects on the binding energy and photo-ionization cross section of a hydrogenic donor impurity in an InAs P?schl-Teller quantum ring”, European Physical Journal B, vol. 84, no. 2, pp. 265-271, 2011.
  • [45]  M. G. Barseghyan, A. A. Kirakosyan and C. A. Duque,”Donor-impurity related binding energy and photoionization cross-section in quantum dots: electric and magnetic fields and hydrostatic pressure effects”, European Physical Journal B, vol. 72, no. December, pp. 521-529, 2009.
  • [46]  A. Hakimyfard, M. G. Barseghyan and A. A. Kirakosyan, ”Simultaneous effects of pressure and magnetic field on intersubband optical transitions in P?schl-Teller quantum well”, Physica E, vol. 41, no. 8, pp. 1596-1599, 2009.
  • [47]  H. Yildirim and M. Tomak, ”Optical absorption of a quantum well with an adjustable asymmetry”, European Physical Journal B, vol. 50, no. 4, pp. 559-564, 2006.
  • [48]  ?. Karabulut and S. Baskoutas, ”Second and third harmonic generation susceptibilities of spherical quantum dots: Effects of impurities, electric field and size”, Journal of Computational and Theoretical Nanoscience, vol. 6, no. 1, pp. 153-156, 2009.
  • [49]  C. A. Duque, M. E. Mora-Ramos, E. Kasapoglu, F. Ungan, U. Yesilgul, S. ?akiro?lu, H. Sari and I. S?kmen, ”Impurity-related linear and nonlinear optical response in quantum-well wires with triangular cross section”, Journal of Luminiscence, vol. 143, no. November, pp. 304-313, 2013.
  • [50]   W. Xie,”Third-order nonlinear optical susceptibility of a donor in elliptical quantum dots”, Superlattices and Microstructures, vol. 53, no. January, pp. 49-54, 2013.
  • [51]   W. Xie, ”Optical anisotropy of a donor in ellipsoidal quantum dots”, Physica B, vol. 407, no. 23, pp. 4588-4591, 2012.
  • [52]   T. Chen and W. Xie, ”Nonlinear optical properties of a three-dimensional anisotropic quantum dot”, Solid State Communications, vol. 152, no. 4, pp. 314-19, 2012.
  • [53]  Gh. Safarpour, M. A. Izadi, M. Novzari, E. Niknam and M. Moradi, ”Anisotropy effect on the nonlinear optical properties of a three-dimensional quantum dot confined at the center of a cylindrical nano-wire”, Physica E, vol. 59, no. May, pp. 124-132, 2014.
  • [54]  Gh. Safarpour, M. A. Izadi, M. Novzari and S. Yazdanpanahi, ”Anisotropy effect on the linear and nonlinear optical properties of a laser dressed donor impurity in a GaAs/GaAlAs nanowire superlattice”, Superlattices and Microstructures, vol. 75, no. November, pp. 936-937, 2014.
  • [55]   S. Rajashabala and K. Navaneethakrishnan, ”Effects of dielectric screening and position dependent effective mass on donor binding energies and on diamagnetic susceptibility in a quantum well”, Superlattices and Microstructures, vol. 43, no. 3, pp. 247-261, 2008.
  • [56]  S. Rajashabala and K. Navaneethakrishnan, ”Effective masses for donor binding energies in quantum well systems”, Modern Physics Letters B, vol. 20, no. 24, pp. 1529-1541, 2006.
  • [57]   S. Rajashabala and K. Navaneethakrishnan, ”Effective masses for donor binding energies in non-magnetic and magnetic quantum well systems: effect of magnetic field”, Brazilizn Journal of Physics, vol. 37, no. 3B, pp. 1134- 1140, 2007.
  • [58]  A. J. Peter and K. Navaneethakrishnan, ”Effects of position-dependent effective mass and dielectric function of a hydrogenic donor in a quantum dot”, Physica E, vol. 40, no. 8, pp. 2747-2751, 2008.
  • [59]  R. Khordad, ”Effects of position-dependent effective mass of a hydrogenic donor impurity in a ridge quantum wire”, Physica E, vol. 42, no. 5, pp. 1503-1508, 2010.
  • [60]   R. Khordad, ”Effect of position-dependent effective mass on linear and nonlinear optical properties of a cubic quantum dot”, Physica B, vol. 406, no. 20, pp. 3911-3916, 2011.
  • [61]   X. -H. Qi, X. -J. Kang and J. -J. Liu, ”Effect of a spatially dependent effective mass on the hydrogenic impurity binding energy in a finite parabolic quantum well”, Physical Review B, vol. 58, no. 16, pp. 10578-10582, 1998.
  • [62]  A. J. Peter, ”The effect of position-dependent effective mass of hydrogenic impurities in parabolic GaAs/GaAlAs quantum dots in a strong magnetic field, ” International Journal of Modern Physics B, vol. 23, no. 26, pp. 5109- 5118, 2009.
  • [63]  Y. -X. Li, J. -J. Liu and X. -J. Kang, ”The effect of a spatially dependent effective mass on hydrogenic impurity binding energy in a finite parabolic quantum well”, Journal of Applied Physics, vol. 88, no. 5, pp. 2588-2592, 2000.
  • [64]  Y. Naimi, J. Vahedi and M. R. Soltani, ”Effect of position-dependent effective mass on optical properties of spherical nanostructures”, Optical and Quantum Electronics, vol. 47, no. 8, pp. 2947-2956, 2015.
  • [65]   S. Pal, J. Ganguly, S. Saha and M. Ghosh, ”Oscillator strength of impurity doped quantum dots: Influence of Gaussian white noise”, Physica B, vol. 474, no. 1 October, pp. 41-46, 2015.
  • [66]  S. Sarkar, A. P. Ghosh, A. Mandal and M. Ghosh, ”Modulating nonlinear optical properties of impurity doped Quantum dots via the interplay between anisotropy and Gaussian white noise”, Superlattices and Microstructures, vol. 90, no. February, pp. 297-307, 2016.
  • [67]  S. Saha, S. Pal, J. Ganguly and M. Ghosh, ”Influence of position-dependent effective mass on third-order nonlinear optical susceptibility of impurity doped Quantum dots in presence of Gaussian white noise”, Physica B, vol. 484, no. 1 March, pp. 109-113, 2016.
  • [68]  A. P. Ghosh, A. Mandal, S. Sarkar and M. Ghosh, ”Influence of position-dependent effective mass on the nonlinear optical properties of impurity doped Quantum dots in presence of Gaussian white noise”, Optics Communications, vol. 367, no. 15 May, pp. 325-334, 2016.
  • [69]   V. Fock, “Bemerkung zur quantelung des harmonischen oszillators im magnetfeld“, Zeitschrift für Physik, vol. 47, no. 5, pp. 446-448, 1928.
  • [70]   C. G. Darwin, “The diamagnetism of the free electron”, Proceedings of Cambridge Philosophical Society, vol. 27, pp. 86, 1930.
Copyright © 2016 Isaac Scientific Publishing Co. All rights reserved.