Isaac Scientific Publishing
Advances in Astrophysics
AdAp > Volume 2, Number 2, May 2017

LRS Bianchi Type-I Universe in F (T) Theory of Gravity

Download PDF  (376.4 KB)PP. 117-125,  Pub. Date:May 10, 2017
DOI: 10.22606/adap.2017.22006

Author(s)
M.V. Dawande, K. S. Adhav, S. S. Nerkar
Affiliation(s)
Bharatiya Mahavidyalaya, Amravati; Professor (Mathematics), School 0f Mathematical & Statistical Sciences, Hawassa University, Ethiopia; P.R.Pote (Patil) College of Engineering and Management, Amravati
Abstract
We have studied the spatially homogeneous and anisotropic Locally Rotationally Symmetric (LRS) Bianchi type-I universe in F(T) theory of gravity. By using a conservation equation, we have discussed some well known F(T) models. It is interesting to observe that these F(T) gravity models represent the different phases (matter, radiation and dark energy eras) of the universe. An attempt has been made to retain Sharif and Rani’s [1] forms of the various quantities. Our results are analogous to the results obtained by Sharif and Rani [1].
Keywords
F(T) gravity, LRS Bianchi type-I universe, continuity equation
References
  • [1]  M. Sharif, and S. Rani, "F(T) Models within Bianchi type-I Universe," Modern Physics Letters A , vol. 26, no. 22, pp. 1657-1671, 2011.
  • [2]  S. Perlmutter, S. Gabi, G. Goldhaber, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, R. Pain and C. R. Pennypacker, “Measurements Based in part on data from the Isaac Newton Group Telescopes, KPNO and CTIO Observatories run by AURA, Mount Stromlo & Siding Spring Observatory, Nordic Optical Telescope, and the WM Keck Observatory of the Cosmological Parameters Ω and Λ from the First Seven Supernovae at z≥ 0.3,” The Astrophysical Journal, vol. 483, no. 2, pp. 565, 1997.
  • [3]  S. Perlmutter, G. Aldering, M. Della Valle, S. Deustua, R. S. Ellis, S. Fabbro, A. Fruchter, G. Goldhaber, D. E. Groom, I. M. Hook and A. G. Kim, “Discovery of a supernova explosion at half the age of the Universe,” Nature, vol. 391, no. 6662), pp. 51-54, 1998.
  • [4]  S. Perlmutter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar, D. E. Groom and I. M. Hook, “Measurements of Ω and Λ from 42 high-redshift supernovae,’ The Astrophysical Journal, vol. 517, no.2, pp. 565, 1999.
  • [5]  A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P. M. Garnavich, R. L. Gilliland, C. J. Hogan, S. Jha, R. P. Kirshner and B.R.U.N.O. Leibundgut, “Observational evidence from supernovae for an accelerating universe and a cosmological constant,” The Astronomical Journal, vol. 116, no. 3, pp. 1009, 1998.
  • [6]  A.G. Riess, L.G. Strolger, J. Tonry, S. Casertano, H.C. Ferguson, B. Mobasher, , P. Challis, A.V. Filippenko, S. Jha, W. Li and R. Chornock, “Type Ia Supernova Discoveries at z> 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy EvolutionBased on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555,” The Astrophysical Journal, vol. 607, pn. 2, pp. 665, 2004.
  • [7]  C. L. Bennett, M. Halpern, G. Hinshaw, N. Jarosik, A. Kogut, M. Limon, S. S. Meyer, L. Page, D. N. Spergel, G. S. Tucker and E. Wollack, “ First-Year Wilkinson Microwave Anisotropy Probe (WMAP) WMAP is the result of a partnership between Princeton University and the NASA Goddard Space Flight Center. Scientific guidance is provided by the WMAP Science Team. Observations: Preliminary Maps and Basic Results,” The Astrophysical Journal Supplement Series, vol. 148, no. 1, pp. 1, 2003.
  • [8]  E. Komatsu, A. Kogut, M. R. Nolta, C. L. Bennett, M. Halpern, G. Hinshaw, N. Jarosik, M. Limon, S. S. Meyer, L. Page and D. N. Spergel, “ First-Year Wilkinson Microwave Anisotropy Probe (WMAP) WMAP is the result of a partnership between Princeton University and the NASA Goddard Space Flight Center. Scientific guidance is provided by the WMAP Science Team. Observations: Tests of Gaussianity,” The Astrophysical Journal Supplement Series, vol. 148, no. 1, pp. 119, 2003.
  • [9]  D. N. Spergel, R. Bean, O. Doré, M.R. Nolta, C.L. Bennett, J. Dunkley, G. Hinshaw, N. Jarosik, E. Komatsu, L. Page and H.V. Peiris, “Three-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: implications for cosmology,” The Astrophysical Journal Supplement Series, vol.170, no.2,pp. 377, 2007.
  • [10]  E. Hawkins, S. Maddox, S. Cole, O. Lahav, D. S. Madgwick, P. Norberg, J. A. Peacock, I. K. Baldry, C. M. Baugh, J. Bland-Hawthorn and T. Bridges, “The 2dF Galaxy Redshift Survey: correlation functions, peculiar velocities and the matter density of the Universe,” Monthly Notices of the Royal Astronomical Society, vol. 346,no.1, pp.78-96.2003.
  • [11]  M. Tegmark, M. A. Strauss, M. R. Blanton, K. Abazajian, S. Dodelson, H. Sandvik, X. Wang, D.H., Weinberg, I. Zehavi, N.A. Bahcall and F. Hoyle, “Cosmological parameters from SDSS and WMAP,” Physical Review D, vol. 69, no. 10, pp. 103501, 2004.
  • [12]  S. Cole, W. J. Percival, J. A. Peacock, P. Norberg, C. M. Baugh, C. S. Frenk, I. Baldry, J. Bland- Hawthorn, T. Bridges, R. Cannon and M. Colless, “The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implication,” Monthly Notices of the Royal Astronomical Society, vol. 362, no. 2, pp. 505-534, 2005.
  • [13]  P. A. R. Ade, N. Aghanim, C. Armitage-Caplan, M. Arnaud, M. Ashdown, F. Atrio-Barandela, J. Aumont, C. Baccigalupi, A.J. Banday, R.B. Barreiro and J.G. Bartlett, “Planck 2013 results. XVI. Cosmological parameters,” Astronomy & Astrophysics, vol. 571, pp. A16, 2014.
  • [14]  L. Yang, C.C. Lee, L. W. Luo and C. Q. Geng, “Observational constraints on exponential gravity,” Physical Review D, vol. 82, no. 10, pp. 103515, 2010.
  • [15]   S. I. Nojiri, and S. D. Odintsov, “EConf: Electron. Conf,” Proc. Arch C, vol. 602061, pp. 06, 2006.
  • [16]  S. I. Nojiri, and S.D. Odintsov, “Introduction to modified gravity and gravitational alternative for dark energy,” International Journal of Geometric Methods in Modern Physics, vol.4, no. 01, pp. 115-145, 2007.
  • [17]   S. I. Nojiri and S. D. Odintsov, “Unified cosmic history in modified gravity: from F(R) theory to Lorentz non-invariant models,” Physics Reports, vol. 505, no. 2, pp. 59-144, 2011.
  • [18]  T. P. Sotiriou And V. Faraoni, “f(R) theories of gravity,” Reviews of Modern Physics, vol. 82, no. 1, pp. 451, 2010.
  • [19]  A. De Felice and S. Tsujikawa, “ f (R) theories,” Living Rev. Rel, vol. 13, no. 3, pp.1002-4928, 2010.
  • [20]   T. Clifton, P. G. Ferreira, A. Padilla and C. Skordis, “Modified gravity and cosmology,” arXiv preprint, arXiv:1106.2476, 2011.
  • [21]   T. Harko, F. S. Lobo, S. I. Nojiri and S. D. Odintsov, “f(R, T) gravity,” Physical Review D, vol. 84, no. 2, pp. 024020, 2011.
  • [22]   R. Ferraro and F. Fiorini, “Modified teleparallel gravity: inflation without an inflaton,” Physical Review D, 75(8), p.084031, 2007.
  • [23]  R. Ferraro and F. Fiorini, “Born-Infeld gravity in Weitzenb?ck spacetime,” Physical Review D, vol. 78, no. 12, pp. 124019, 2008.
  • [24]  S. H. Chen, J. B. Dent, S. Dutta and E. N. Saridakis, “Cosmological perturbations in f(T) gravity,” Physical Review D, vol. 83, no. 2, pp. 023508, 2011.
  • [25]  B. Li, T. P. Sotiriou and J. D. Barrow, “f(T) gravity and local Lorentz invariance,” Physical Review D, vol. 83, no. 6, pp. 064035, 2011.
  • [26]  H. R. Kausar, I. Noureen and M. U. Shahzad, “Dynamical analysis of charged anisotropic spherical star in f(R) gravity,” The European Physical Journal Plus, vol. 130, no. 10, pp. 1-10, 2015.
  • [27]  S. D. Odintsov and V. K. Oikonomou, “Bouncing cosmology with future singularity from modified gravity,” Physical Review D, vol. 92, no. 2, pp. 024016, 2015.
  • [28]  S. D. Odintsov, V. K. Oikonomou and E. N. Saridakis, “Superbounce and loop quantum ekpyrotic cosmologies from modified gravity: F(R), F(G) and F(T) theories,” Annals of Physics, vol. 363, pp. 141-163, 2015.
  • [29]  G. Abbas, D. Momeni, M. A. Ali, R. Myrzakulov and S. Qaisar, “Anisotropic compact stars in f(G) gravity.” Astrophysics and Space Science, vol. 357, no. 2, pp. 1-11, 2015.
  • [30]  S. B. Nassur, A. V. Kpadonou, M. E. Rodrigues, M. J. S. Houndjo and J. Tossa, “Realistic f(T) model describing the de Sitter epoch of the dark energy dominated universe,” Canadian Journal of Physics, vol. 93, no. 10, pp. 1050-1056, 2015.
  • [31]  J. J. Geng, R. Y. Guo, D. Z. He, J. F. Zhang and X. Zhang, “Redshift drift constraints on f(T) gravity,” Frontiers of Physics, vol. 10, no. 5, pp. 1-6, 2015.
  • [32]   A. Das, F. Rahaman, B. K. Guha and S. Ray, “Relativistic compact stars in f(T) gravity admitting conformal motion,” Astrophysics and Space Science, vol. 358, no. 2, pp. 1-8, 2015.
  • [33]  G. L. Nashed, G.L., “FRW in quadratic form of f(T) gravitational theories,” General Relativity and Gravitation, vol. 47, no. 7, pp. 1-14, 2015.
  • [34]   G. Hinshaw, “First year Wilkinson microwave anisotropy probe (WMAP) observations: angular power spectrum,” Astrophys. J. Suppl, vol. 148, pp. 135, 2003.
  • [35]  G. Hinshaw, M. R. Nolta, C. L. Bennett, R. Bean, O. Dore, M. R. Greason, M. Halpern, R. S. Hill, N. Jarosik, A. Kogut and E. Komatsu, “Three-Year Wilkinson Microwave Anisotropy Probe (WMAPWMAP is the result of a partnership between Princeton University and the NASA Goddard Space Flight Center. Scientific guidance is provided by the WMAP Science Team.) Observations: Temperature Analysis,” The Astrophysical Journal Supplement Series, vol. 170, no. 2, pp. 288, 2007.
  • [36]  G. Hinshaw, J. L. Weiland, R. S. Hill, N. Odegard, D. Larson, C. L. Bennett, J. Dunkley, B. Gold, M. R. Greason, N. Jarosik, and E. Komatsu, “FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE WMAP is the result of a partnership between Princeton University and NASA's Goddard Space Flight Center. Scientific guidance is provided by the WMAP Science Team. OBSERVATIONS: DATA PROCESSING, SKY MAPS, AND BASIC RESULTS,” The Astrophysical Journal Supplement Series, vol. 180, no. 2, pp. 225, 2009.
  • [37]  S. Kumar and C. P. Singh, “Anisotropic Bianchi type-I models with constant deceleration parameter in general relativity,” Astrophysics and Space Science, vol. 312, no. 1-2, pp. 57-62, 2007.
  • [38]  S. Kumar and C. P. Singh, “Exact bianchi type-I cosmological models in a scalar-tensor theory,” International Journal of Theoretical Physics, vol. 47, no. 6, pp. 1722-1730, 2008.
  • [39]  M. Sharif and S. Waheed, “Anisotropic universe models in Brans–Dicke theory,” The European Physical Journal C, vol. 72, no. 2, pp. 1-12, 2012.
  • [40]  R. Bali and P. Kumawat, “Bulk viscous LRS Bianchi type V tilted stiff fluid cosmological model in general relativity,” Physics Letters B, vol. 665, no. 5, pp. 332-337, 2008.
  • [41]  H. Amirhashchi, “LRS Bianchi type II stiff fluid cosmological model with decaying vacuum energy density Λ in general relativity,” Physics Letters B, vol. 697, no. 5, pp. 429-433, 2011.
  • [42]  A. K. Yadav and B. Saha, “LRS Bianchi-I anisotropic cosmological model with dominance of dark energy,” Astrophysics and Space Science, vol. 337, no. 2, pp. 759-765, 2012.
  • [43]  K. S. Adhav, “LRS Bianchi type-I cosmological model with linearly varying deceleration parameter,” The European Physical Journal Plus, vol. 126, no. 12, pp. 1-5, 2011.
  • [44]  K. S. Adhav, “LRS Bianchi Type-I universe with anisotropic dark energy in lyra geometry,” International Journal of Astronomy and Astrophysics, vol. 1, no. 04, pp. 204, 2011.
  • [45]  K. S. Adhav, “LRS Bianchi type-I cosmological model in f(R, T) theory of gravity,” Astrophysics and Space Science, vol. 339, no. 2, pp. 365-369, 2012.
  • [46]  K. S. Adhav, A. S. Bansod, M. S. Desale, R. B. Raut, “LRS Bianchi type-I models with constant deceleration parameter in creation field cosmology,” Astrophysics and Space Science, vol. 331, no. 2, pp. 689-695, 2011.
  • [47]  M. Sharif and M. Zubair, “Dynamics of Bianchi I universe with magnetized anisotropic Dark Energy,” Astrophysics and Space Science, vol. 330, no. 2, pp. 399-405, 2010.
  • [48]   M. Sharif and H. R. Kausar, “Anisotropic fluid and Bianchi type III model in f (R) gravity,” Physics Letters B, vol. 697, no. 1, pp. 1-6, 2011.
  • [49]   R. K. Tiwari, “Bianchi type-I cosmological models with perfect fluid in general relativity,” Research in Astronomy and Astrophysics, vol. 10, no. 4, pp. 291, 2010.
  • [50]  E. Elizalde, R. Myrzakulov, V. V. Obukhov and D. Sáez-Gómez, “ΛCDM epoch reconstruction from F(R, G) and modified Gauss–Bonnet gravities,” Classical and Quantum Gravity, vol. 27, no. 9, pp. 095007, 2010.
  • [51]  R. Bean, “TASI lectures on cosmic acceleration,” arXiv preprint, arXiv:1003.4468, 2010.
Copyright © 2017 Isaac Scientific Publishing Co. All rights reserved.