Isaac Scientific Publishing
Advances in Analysis
AAN > Volume 3, Number 1, January 2018

Products of Harmonic Polynomials and Delta Functions

Download PDF  (416.5 KB)PP. 23-27,  Pub. Date:June 1, 2017


Author(s)
Ricardo Estrada
Affiliation(s)
restrada@math.lsu.edu
Abstract

Keywords
Dirac delta function, harmonic polynomials, products of distributions.
References
  • [1]  Axler, S., Bourdon, P., and Ramey, W., Harmonic Function Theory, second edition, Springer, New York, 2001.
  • [2]  Blinder, S.M., Delta functions in spherical coordinates and how to avoid losing them: Fields of point charges and dipoles, American Journal of Physics 71 (2003), 816-818.
  • [3]  Bowen, J. M., Delta function terms arising from classical point-source fields, American Journal of Physics 62 (1994), 511-515.
  • [4]  Estrada, R., Regularization and derivatives of multipole potentials, Journal of Mathematical Analysis and Applications 446 (2016), 770-785.
  • [5]  Estrada, R. and Kanwal, R. P., Regularization and distributional derivatives of (χ21+...χ2p)n/2, Proceedings of the Royal Society of London A 401 (1985), 281-297.
  • [6]  Estrada, R. and Kanwal, R. P., Regularization, pseudofunction, and Hadamard finite part, Journal of Mathematical Analysis and Applications 141 (1989), 195-207.
  • [7]  Estrada, R. and Kanwal, R.P., A distributional approach to Asymptotics. Theory and Applications, second edition, Birkh?user, Boston, 2002.
  • [8]  Farassat, F., Introduction to generalized functions with applications in aerodynamics and aeroacoustics, NASA Technical Paper 3248 (Hampton, VA: NASA Langley Research Center) (1996); http://ntrs.nasa.gov.
  • [9]  Folland, G.B., Introduction to Partial Differential Equations, Princeton University Press, Princeton, 1976.
  • [10]  Frahm, C.P., Some novel delta-function identities, American Journal of Physics 51 (1983), 826–29.
  • [11]  Gel’fand, I. M. and Shilov, G. E., Generalized functions, Vol. 1. Properties and operations, Academic Press, New York-London, 1964.
  • [12]  Gsponer, A., Distributions in spherical coordinates with applications to classical electrodynamics, European Journal of Physics 28 (2007), 267–75; European Journal of Physics 28 (2007), 1241 (corrigendum).
  • [13]  Hnizdo, V., Generalized second-order partial derivatives of 1/r, European Journal of Physics 32 (2011), 287–297.
  • [14]  Jackson, J. D., Classical Electrodynamics, Third Edition, Wiley, New York, 1998.
  • [15]  Jones, D. S., Generalised Functions, Cambridge Univ. Press, London-New York, 1982.
  • [16]  Kanwal, R.P., Generalized Functions: Theory and Technique, Third Edition, Birkh?user, Boston, 2004.
  • [17]  Namias, V., Singularities in the fields of electric and magnetic multipoles and related identities involving the Dirac delta function, International Journal of Education in Science and Technology 18 (1987), 767-781.
  • [18]  Parker, E., An apparent paradox concerning the field of an ideal dipole. Preprint, arXiv:1604.01121v1.
  • [19]  Rubin, B., Introduction to Radon transforms (with elements of Fractional calculus and Harmonic Analysis), Cambridge University Press, Cambridge, 2015.
Copyright © 2017 Isaac Scientific Publishing Co. All rights reserved.