Isaac Scientific Publishing

Geosciences Research

Dependence of the Stable Carbon Isotope of Planktic Foraminiferal Species Globigerina Bulloides on Food Supply in the Indian Ocean Sector of Southern Ocean

Download PDF (377 KB) PP. 236 - 241 Pub. Date: November 1, 2017

DOI: 10.22606/gr.2017.24003

Author(s)

  • Neloy Khare*
    Ministry of Earth Sciences, Prithvi Bhawan, Lodhi Road, New Delhi – 110003, India

Abstract

Twenty one surface sediment samples (comprising Peterson Grab, Piston, Gravity and Spade core top samples) were collected along a north-south transect (between 9.69°N and 55.01°S latitude and 80°E and 40°E longitude). These samples were used to study δ13C values in the calcareous shells of planktic foraminiferal species Globigerina bulloides and the variations were compared with the latitudinal changes in the overall size of the planktic foraminiferal population obtained from earlier published data along similar transect. The results establish an interdependence of δ13C values of planktic species Globigerina bulloides and the overall size of planktic foraminiferal population. The region where the δ13C values of planktic species Globigerina bulloides decrease the overall size of planktic foraminiferal population increases. Such a distinct pattern may be ascribed to the generation of food/nutritive material. It is suggested that similar studies to understand variations in δ13C values in foraminiferal shells and its population size in geographically distinct latitudinal corridors covering distinct marine regime of physico-chemical conditions be undertaken to further strengthen the argument proposed in the present study.

Keywords

Stable carbon isotope, planktic foraminifera, nutrient, Indian Ocean sector, southern ocean.

References

[1] O. Friedrich, J.O. Herrle, P.A. Wilson, M.J. Cooper, J. Erbacher, and C. Hemleben, “Early Maastrichtian carbon cycle perturbation and cooling event: Implications from the South Atlantic Ocean,” Paleoceanography, vol. 24, PA2211, 2009.

[2] N.J. Shackleton and J.P. Kennett, “Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: Oxygen and carbon isotope analysis in DSDP sites 277, 279, and 280 Initial Rep,” Deep Sea Drill. Proj, vol. 29, pp. 743-755, 1975.

[3] T.G. Li, R.T. Sun, D.Y. Zhang, Z.X. Liu, Q. Li and B. Jiang, “Evolution and variation of the Tsushima warm current during the late quaternary: Evidence from planktonic foraminifera, oxygen and carbon isotopes Science in China, Series D,” Earth Sciences, vol. 50, pp. 725-735, 2007.

[4] T. Li, Z. Liu, M.A. Hall, Y. Saito, S. Berne, S. Cang, Z. Cheng, “A broad deglacial δ13C minimum event in planktonic foraminiferal records in the Okinawa Trough,” Chinese Science Bulletin, vol. 47, pp. 599-603, 2002.

[5] B.K. Linsley, R.B. Dunbar, “The late Pleistocene history of surface water δ13C in the Sulu Sea: possible relationship to Pacific deepwater δ13C changes,” Paleoceanography, vol. 9, pp. 317-340, 1994.

[6] T. Pados, R.F. Spielhagen, D. Bauch, H. Meyer and M. Segl, “Oxygen and carbon isotope composition of modern planktic foraminifera and near-surface waters in the Fram Strait (Arctic Ocean) – a case study,” Biogeosciences, vol 12, pp. 1733-1752, 2015.

[7] P. Zang, R. Zuraida, J. Xu and C. Yang, “Stable carbon and oxygen isotopes of four planktonic foreminiferal species from core-top sediments of the Indonesian throughflow region and their significance,” Acta Oceanologica Sinica, vol. 35, no. 10, pp. 63-75, 2016.

[8] P F. Fraguas, K. B. Costa and F. A. L. Toledo, “Relationship between isotopic composition (Δ18O and Δ13C) and plaktonic foraminifera test size in core tops from the Brazilian Continental Margin”, Brazilian Journal of Oceanography, vol. 59, no.4, 2011, Available: Http://dx.doi.org/10.1590/S1679-87592011000400003.

[9] W. Xiao, R. Wang, L. Polyak, A. Astakhov and X Cheng, “Stable oxygen and carbon isotopes in planktonic foraminifera Neogloboquadrina pachyderma in the Arctic Ocean: An overview of published and new surfacesediment data,” Marine Geology, vol. 352, pp. 397-408, 2014.

[10] D. Bauch, J. Carstens, and G.Wefer, “ Oxygen isotope composition of living Neogloboquadrina pachyderma (sin.) in the Arctic Ocean,” Earth and Planetary Science Letters, vol. 146, pp. 47-58, 1997

[11] R.G. Fairbanks, P.H. Wiebeand and A.W.H. Be’, “Vertical distribution and isotopic composition of living planktonic foraminifera in the Western North Atlantic,” Science, vol. 207, pp. 61-63, 1980.

[12] C. Hemleben, M. Spindler, and O.R. Anderson, Modern Planktonic Foraminifera, Springer, New York, 1989, pp. 363.

[13] K.E. Kohfeld, R.G. Fairbanks, S.L. Smithand and I.D. Walsh,. “Neogloboquadrina pachyderma (sinistral coiling) as paleoceanographic tracers in polar oceans. Evidence from Northeast Water Polynya plankton tows, sediment traps, and surface sediments,”Paleoceanography, vol. 11, pp. 679-699, 1996.

[14] P.M. Kroopnick, “The distribution of C of SCO in the world oceans,” Deep Sea Research Part A, vol. 32, pp. 57-84, 1985.

[15] L.R. Sautter, and R.C. Thunell, “Seasonal variability in the δO and δC of planktonic foraminifera from an upwelling environment. Sediment trap results from the San Pedro Basin, southern California Bight,” Paleoceanography, vol. 6, pp. 307-334, 1991.

[16] J. Simstich, Die ozeanische Deckschicht des Europ?ischen Nordmeers im Abbild stabiler Isotope von Kalkgeh?usen unterschiedlicher, Berichte Institut für Geowissenschaften University Kiel, Kiel, Germany, 1999, pp. 96.

[17] H.J., Spero, I. Lerche, and D.F., Williams, “Opening the carbon isotope "vital effect" black box, 2, quantitative model for interpreting foraminiferal carbon isotope data,” Paleoceanography, vol. 6, pp. 639-655, 1991.

[18] L. Stramma, “The south Indian Ocean current,” Journal of Physical Oceanography, vol. 22, pp. 325-347, 1992.

[19] K. Wyrtki, Oceanographic Atlas of the International Indian Ocean Expedition, National Science Foundation, Washington D.C., 1971, pp. 531.

[20] G.E.R. Deacon, “The hydrology of the Southern Ocean,” Discovery Report, vol.15, pp. 1-24, 1937.

[21] N. Anilkumar, M.K. Dash, A.J. Luis, B.V. Ramesh, Y.K. Somayajulu, M. Sudhakar and P.C. Pandey, “Oceanic front along 45° east across Antarctic Circumpolar current during Austral summer 2004,” Current Science, vol. 88, pp. 1669-1673. 2005.

[22] N. Bahulayen, and C. Shaji, "Diagnostic model of 3-D circulation in the Arabian Sea and western equatorial Indian Ocean,". Proc. Indian Nat. Sci. Acad., vol. 62, pp. 325–347, 1996.

[23] V.K. Banakar, G. Parthiban, J.N. Pattanand P. Jauhari, "Chemistry of surface sediment along a north south transect across the equator in the central Indian basin: an assessment of biogenic and detrital influences on elemental burial of the sea floor" Chemical Geology, vol. 147, pp. 217-232, 1998.

[24] N. Khare, and S.K. Chaturvedi, "Size variations of planktonic foraminiferal population in Indian Ocean sector of Southern Ocean," Indian Journal of Marine Sciences, vol. 35, pp. 221-226, 2006.

[25] A. Mackensen, “Changing Southern Ocean palaeocirculation and effects on global climate,” Antarctic Science, vol. 16, pp. 369-386, 2004.

[26] C.M. Lali and T.R. Parsons, Biological Oceanography; An Introduction, 2nd Edition, The Open University, Butterworth Heinemann, Oxford, 1997, pp. 314 .

[27] N. O. Eguchi, H. Kawahata, and A. Taira, “Seasonal response of planktonic foraminifera to surface ocean condition: Sediment trap results from the central North Pacific Ocean” J. Oceanogr, vol. 55, pp. 681–691, 1999.

[28] E. Boltovskoy and R. Wright Recent foraminifera, Junk. The Hague, 1976, pp. 515.

[29] S. Honjo, “Flux of particles to the interior of open ocean,” in Particle Flux in the Ocean, (Eds.) Ittekot, V., Schafer, P., Honjo, S., and Depetris, P.J.) SCOPE 57, John Wiley & Sons, Chichester. 1996, pp. 91-145.

[30] M. Tomezak, and J.S. Godfrey, Regional Oceanography: An Introduction. Second Edition, Day Publication, Delhi, 2003, pp. 390.