Isaac Scientific Publishing

Geosciences Research

Arsenic in Shallow Aquifers Linked to the Electrical Ground Conductivity: the Mekong Delta Source Example

Download PDF (1079.2 KB) PP. 180 - 195 Pub. Date: August 18, 2017

DOI: 10.22606/gr.2017.23004

Author(s)

  • Van Phan T.H*
    Université Grenoble Alpes – Institut des Sciences de la Terre (ISTerre), F-38041 Grenoble, France; Ho Chi Minh City University of Technology (HCMUT) – Vietnam National University, Vietnam
  • Timothée Bonnet

    Université Grenoble Alpes – Institut des Sciences de la Terre (ISTerre), F-38041 Grenoble, France
  • Stéphane Garambois

    Université Grenoble Alpes – Institut des Sciences de la Terre (ISTerre), F-38041 Grenoble, France
  • Delphine Tisserand

    Université Grenoble Alpes – Institut des Sciences de la Terre (ISTerre), F-38041 Grenoble, France
  • Fabrizio Bardelli

    Université Grenoble Alpes – Institut des Sciences de la Terre (ISTerre), F-38041 Grenoble, France
  • Rizlan Bernier-Latmani

    Ecole Polytechnique Fédérale de Lausanne (EPFL) – Environmental Microbiology Laboratory (EML) EPFL-ENAC-IIE-EML, Station 6, CH-1015 Lausanne, Switzerland
  • Laurent Charlet

    Université Grenoble Alpes – Institut des Sciences de la Terre (ISTerre), F-38041 Grenoble, France

Abstract

Heavy arsenic (As) contamination of groundwater is investigated in the An Giang province of Vietnam to better understand the interplay between surface sedimentology and anoxic aquifer. In particular, the present study aims to compare As concentrations measured in groundwater pumped from 40 shallow wells (< 40 m in depth) along the lower Mekong stream with surface variations of electrical conductivity measured using an electromagnetic geophysical device (EM 31). Based on the analytical results for groundwater, core sediments and geophysical data, we show the permeability and clay content of surface soil derived through EM conductivity measurement to have a positive and significant correlation (R2 = 0.83, n = 27) with the distribution of As concentration in shallow aquifers. This indicates that the presence of soil and subsoil claypan can enhance the reducing conditions in the aquifer. The results also suggest the important role of HCO3-, Fe/Mn (oxyhydr)oxides and clay minerals in mobilizing As groundwater leading to a major health threat to local people of this province.

Keywords

Mekong Delta, electrical ground conductivity, arsenic, shallow aquifer, iron (oxyhydr)Oxides.

References

[1] Agusa, T., Kubota, R., Kunito, T., Tu, B. M., Pham, T. K. ., Chamnan, C., … Tanabe, S. (2007). Arsenic Pollution in Groundwater of Vietnam and Cambodia: A Review. Biomed Res Trace Elements, 18(1), 35–47.

[2] Agusa, T., Pham, T. K. T., Vi, M. L., Duong, H. A., Tanabe, S., Pham, H. V, & Berg, M. (2014). Human exposure to arsenic from drinking water in Vietnam. Science of the Total Environment, 488–489, 562–569. http://doi.org/10.1016/j.scitotenv.2013.10.039

[3] Andersen, C. B. (2002). Understanding Carbonate Equilibria By Measuring Alkalinity in Experimental and Natural Systems. Geoscience Education, 50(4), 389–403.

[4] Appelo, C. A. J., Van Der Weiden, M. J. J., Tournassat, C., & Charlet, L. (2002). Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic. Environmental Science and Technology, 36(14), 3096–3103. http://doi.org/10.1021/es010130n

[5] Asta, M. P., Cama, J., Martínez, M., & Giménez, J. (2009). Arsenic removal by goethite and jarosite in acidic conditions and its environmental implications. Journal of Hazardous Materials, 171(1–3), 965–972. http://doi.org/10.1016/j.jhazmat.2009.06.097

[6] Aziz, Z., Geen, A. Van, Stute, M., Versteeg, R., Horneman, A., Zheng, Y., … Ahmed, K. M. (2008). Impact of local recharge on arsenic concentrations in shallow aquifers inferred from the electromagnetic conductivity of soils in Araihazar, Bangladesh. Water Resources Research, 44, 1–15. http://doi.org/10.1029/2007WR006000

[7] Bardelli, F., Cattaruzza, E., Gonella, F., Rampazzo, G., & Valotto, G. (2011). Characterization of road dust collected in Traforo del San Bernardo highway tunnel: Fe and Mn speciation. Atmospheric Environment, 45(35), 6459–6468. http://doi.org/10.1016/j.atmosenv.2011.07.035

[8] Berg, M., Stengel, C., Pham, T. K. T., Pham, H. V, Sampson, M. L., Leng, M., … Fredericks, D. (2007). Magnitude of arsenic pollution in the Mekong and Red River Deltas - Cambodia and Vietnam. Science of the Total Environment, 372, 413–425. http://doi.org/10.1016/j.scitotenv.2006.09.010

[9] Buschmann, J., Berg, M., Stengel, C., Winkel, L., Sampson, M. L., Trang, P. T. K., & Viet, P. H. (2008). Contamination of drinking water resources in the Mekong delta floodplains: Arsenic and other trace metals pose serious health risks to population. Environment International, 34(6), 756–764. http://doi.org/10.1016/j.envint.2007.12.025

[10] Chakraborty, S., Bardelli, F., & Charlet, L. (2010). Reactivities of Fe(II) on Calcite: Selenium Reduction. Environmental Science & Technology, 44(4), 1288–1294.

[11] Charlet, L., Chakraborty, S., Appelo, C. A. J., & Roman-ross, G. (2007). Chemodynamics of an arsenic “‘hotspot’” in a West Bengal aquifer: A field and reactive transport modeling study. Applied Geochemistry, 22, 1273–1292. http://doi.org/10.1016/j.apgeochem.2006.12.022.

[12] Charlet, L., Morin, G., Rose, J., Wang, Y., Auffan, M., Burnol, A., & Fernandez-Martinez, A. (2011). Reactivity at (nano)particle-water interfaces, redox processes, and arsenic transport in the environment. Comptes Rendus Geoscience, 343, 123–139. http://doi.org/10.1016/j.crte.2010.11.005

[13] Doolittle, J. A., Brevik, E. C., Doolittle, J. A., & Brevik, E. C. (2014). The use of electromagnetic induction techniques in soils studies. Geoderma, (223–225), 33–45.

[14] Doolittle, J. A., Sudduth, K. A., Kitchen, N. R., & Indorante, S. J. (1994). Estimating depths to claypans using electromagnetic induction methods. Soil and Water Conservation, 49(6), 572–575.

[15] Erban, L. E., Gorelick, S. M., & Fendorf, S. (2014). Arsenic in the Multi-aquifer System of the Mekong Delta, Vietnam: Analysis of Large-Scale Spatial Trends and Controlling Factors. Environmental Science & Technology, 48(11), 6081–6088. http://doi.org/10.1021/es403932t

[16] Erban, L. E., Gorelick, S. M., Zebker, H. a, & Fendorf, S. (2013). Release of arsenic to deep groundwater in the Mekong Delta, Vietnam, linked to pumping-induced land subsidence. Proceedings of the National Academy of Sciences of the United States of America, 110(34), 13751–6. http://doi.org/10.1073/pnas.1300503110

[17] Farquhar, M. L., Charnock, J. M., Livens, F. R., & Vaughan, D. J. (2002). Mechanisms of Arsenic Uptake from aqueous solution by interaction with Goethite, Lepidocrocite, Mackinawite, and Pyrite: An X-ray Absorption Spectroscopy Study. Environmental Science and Technology, 26, 1757–1762.

[18] Fernández-Martínez, A., Román-Ross, G., Cuello, G. J., Turrillas, X., Charlet, L., Johnson, M. R., & Bardelli, F. (2006). Arsenic uptake by gypsum and calcite: Modelling and probing by neutron and X-ray scattering. Physica B: Condensed Matter, 385–386, 935–937. http://doi.org/10.1016/j.physb.2006.05.276

[19] Ghosal, U., Sikdar, P. K., & Mcarthur, J. M. (2014). Palaeosol Control of Arsenic Pollution: The Bengal Basin in West Bengal, India. Groundwater, 53(4), 588–599. http://doi.org/10.1111/gwat.12251

[20] Guo, H., Li, Y., Zhao, K., Ren, Y., & Wei, C. (2011). Removal of arsenite from water by synthetic siderite: behaviors and mechanisms. Journal of Hazardous Materials, 186, 1847–54. http://doi.org/10.1016/j.jhazmat.2010.12.078

[21] Guo, H., Stüben, D., & Berner, Z. (2007a). Adsorption of arsenic(III) and arsenic(V) from groundwater using natural siderite as the adsorbent. Journal of Colloid and Interface Science, 315(1), 47–53. http://doi.org/10.1016/j.jcis.2007.06.035

[22] Guo, H., Stüben, D., & Berner, Z. (2007b). Arsenic removal from water using natural iron mineral-quartz sand columns. The Science of the Total Environment, 377, 142–51. http://doi.org/10.1016/j.scitotenv.2007.02.001

[23] Hanh, H. T., Kim, K. W., Bang, S., & Hoa, N. M. (2011). Community exposure to arsenic in the Mekong river delta, Southern Vietnam. Journal of Environmental Monitoring, 13(7), 2025–32. http://doi.org/10.1039/c1em10037h

[24] Hedley, C. B., Yule, I. J., Eastwood, C. R., Shepherd, T. G., & Arnold, G. (2004). Rapid identification of soil textural and management zones using electromagnetic induction sensing of soils. Australian Journal of Soil Research, 42(4), 389–400. http://doi.org/10.1071/SR03149

[25] Helz, G. R., & Tossell, J. A. (2008). Thermodynamic model for arsenic speciation in sulfidic waters : A novel use of ab initio computations. Geochimica et Cosmochimica Acta, 72, 4457–4468. http://doi.org/10.1016/j.gca.2008.06.018

[26] Hoang, T. H., Bang, S., Kim, K.-W., Nguyen, M. H., & Dang, D. M. (2010). Arsenic in groundwater and sediment in the Mekong River delta, Vietnam. Environmental Pollution, 158, 2648–58. http://doi.org/10.1016/j.envpol.2010.05.001

[27] Isaure, M.-P., Laboudigue, A., Manceau, A., Sarret, G., Tiffreau, C., Trocellier, P., … Chateigner, D. (2002). Quantitative Zn speciation in a contaminated dredged sediment by μ-PIXE, μ-SXRF, EXAFS spectroscopy and principal component analysis. Geochimica et Cosmochimica Acta, 66(9), 1549–1567. http://doi.org/10.1016/S0016-7037(01)00875-4

[28] Kelly, W. R., Holm, T. R., Wilson, S. D., & Roadcap, G. S. (2005). Arsenic in Glacial Aquifers : Sources and Geochemical Controls. Groundwater, 43(4), 500–510.

[29] Kocar, B. D., & Fendorf, S. (2012). Arsenic Release and Transport in Sediments of the Mekong Delta. Environmental Pollution and Ecotoxicology, 117–124.

[30] Kumar, P., Avtar, R., Kumar, A., Singh, C. K., Tripathi, P., Senthil, K. G., & Ramanathan, A. L. (2014). Geophysical approach to delineate arsenic hot spots in the alluvial aquifers of Bhagalpur district, Bihar (India) in the central Gangetic plains. Applied Water Science, 4, 89–97. http://doi.org/10.1007/s13201-013-0133-y

[31] Langner, P., Mikutta, C., & Kretzschmar, R. (2011). Arsenic sequestration by organic sulphur in peat. Nature Geoscience, 5(1), 66–73. http://doi.org/10.1038/ngeo1329

[32] Luu, T. T. G., Sthiannopkao, S., & Kim, K. W. (2009). Arsenic and other trace elements contamination in groundwater and a risk assessment study for the residents in the Kandal Province of Cambodia. Environment International, 35(3), 455–460. http://doi.org/10.1016/j.envint.2008.07.013

[33] Mandal, B. K., & Suzuki, K. T. (2002). Arsenic round the world: a review. Talanta, 58, 201–35.

[34] McArthur, J. M., Banerjee, D. M., Hudson-Edwards, K. A., Mishra, R., Purohit, R., Ravenscroft, P., … Chadha, D. K. (2004). Natural organic matter in sedimentary basins and its relation to arsenic in anoxic ground water: the example of West Bengal and its worldwide implications. Applied Geochemistry, 19, 1255–1293. http://doi.org/10.1016/j.apgeochem.2004.02.001

[35] Mcneill, J. D. (1990). Use of Electromagnetic Methods for Groundwater Studies. Geotechnical and Environmental Geophysics (Ward SN). Society of Exploration Geophysicists, Tulsa, UK.

[36] Merola, R. B., Hien, T. T., Quyen, D. T. T., & Vengosh, A. (2015). Arsenic exposure to drinking water in the Mekong Delta. Science of the Total Environment, 511, 544–552. http://doi.org/10.1016/j.scitotenv.2014.12.091

[37] Métral, J., Charlet, L., Bureau, S., Mallik, S. B., Chakraborty, S., Ahmed, K. M., … van Geen, A. (2008). Comparison of dissolved and particulate arsenic distributions in shallow aquifers of Chakdaha, India, and Araihazar, Bangladesh. Geochemical Transactions, 9. http://doi.org/10.1186/1467-4866-9-1

[38] Moore, D. M., & Reynolds, R. C. (1997). X-Ray diffraction and the identification and analysis of clay minerals,. Oxford University Press, Oxford, New York (2nd Ed.).

[39] Nath, B., Mallik, S. B., Stüben, D., Chatterjee, D., & Charlet, L. (2010). Electrical resistivity investigation of the arsenic affected alluvial aquifers in West Bengal, India: Usefulness in identifying the areas of low and high groundwater arsenic. Environmental Earth Sciences, 60(4), 873–884. http://doi.org/10.1007/s12665-009-0224-0

[40] Ng, J. C., Wang, J., & Shraim, A. (2003). A global health problem caused by arsenic from natural sources. Chemosphere, 52(9), 1353–9. http://doi.org/10.1016/S0045-6535(03)00470-3

[41] Nguyen, K. P., & Itoi, R. (2009). Source and release mechanism of arsenic in aquifers of the Mekong Delta , Vietnam. Journal of Contaminant Hydrology, 103, 58–69. http://doi.org/10.1016/j.jconhyd.2008.09.005

[42] Nickson, R. T., Mcarthur, J. M., Ravenscroft, P., Burgess, W. G., & Ahmed, K. M. (2000). Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Applied Geochemistry, 15(4), 403–413. http://doi.org/10.1016/S0883-2927(99)00086-4

[43] Pal, A., Saha, S., Maji, S. K., Kundu, M., & Kundu, A. (2012). Wet-chemical synthesis of spherical arsenic nanoparticles by a simple reduction method and its characterization. Advanced Materials Letters, 3(3), 177–180. http://doi.org/10.5185/amlett.2011.9305

[44] Parkhurst, B. D. L., & Appelo, C. A. J. (1999). User’s guide to PhreeqC (Version 2) - A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Department of the Interior, U.S. Geological Survey.

[45] Pellerin, L. (2002). Applications of electrical and electromagnetic methods for environmental and geotechnical investigations. Surveys in Geophysics, 23, 101–132. http://doi.org/10.1023/A:1015044200567

[46] Pettersson, J. K., & Nobes, D. C. (2003). Environmental geophysics at Scott Base: Ground penetrating radar and electromagnetic induction as tools for mapping contaminated ground at Antarctic research bases. Cold Regions Science and Technology, 37(2), 187–195. http://doi.org/10.1016/S0165-232X(03)00037-5

[47] Polizzotto, M. L., Harvey, C. F., Sutton, S. R., & Fendorf, S. (2005). Processes conducive to the release and transport of arsenic into aquifers of Bangladesh. Proceedings of the National Academy of Sciences, 102(52), 18819–18823.

[48] Postma, D., Larsen, F., Minh Hue, N. T., Duc, M. T., Viet, P. H., Nhan, P. Q., & Jessen, S. (2007). Arsenic in groundwater of the Red River floodplain, Vietnam: Controlling geochemical processes and reactive transport modeling. Geochimica et Cosmochimica Acta, 71(21), 5054–5071. http://doi.org/10.1016/j.gca.2007.08.020

[49] Raab, A., Meharg, A. A., Jaspars, M., & Genney, R. (2004). Arsenic–glutathione complexes - their stability in solution and during separation by different HPLC modes. Journal of Analytical Atomic Spectrometry, 19, 183–190.

[50] Ravel, B., & Newville, M. (2005). Athena, Artemis, Hephaestus: Data analysis for X-ray absorption spectroscopy using Ifeffit. Journal of Synchrotron Radiation, 12(4), 537–541. http://doi.org/10.1107/S0909049505012719

[51] Román-Ross, G., Cuello, G. J., Turrillas, X., Fernández-Martínez, A., & Charlet, L. (2006). Arsenite sorption and co-precipitation with calcite. Chemical Geology, 233, 328–336. http://doi.org/10.1016/j.chemgeo.2006.04.007

[52] Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17(5), 517–568. http://doi.org/10.1016/S0883-2927(02)00018-5

[53] Smith, A. H., Ercumen, A., Yuan, Y., & Steinmaus, C. M. (2009). Increased lung cancer risks are similar whether arsenic is ingested or inhaled. J Expo Sci Environ Epidemiol, 19(4), 343–348. http://doi.org/10.1038/jes.2008.73

[54] Smith, A. H., Hopenhayn-Rich, C., Bates, M. N., Goeden, H. M., Hertz-Picciotto, I., Duggan, H. M., … Smith, M. T. (1992). Cancer risks from arsenic in drinking water. Environmental Health Perspectives, 97(6), 259–267. http://doi.org/10.1289/ehp.9297259

[55] S?, H. U., Postma, D., Jakobsen, R., & Larsen, F. (2008). Sorption and desorption of arsenate and arsenite on calcite. Geochimica et Cosmochimica Acta, 72(24), 5871–5884. http://doi.org/10.1016/j.gca.2008.09.023

[56] Stanger, G., Truong, T. Van, Ngoc, K. S. L. T. M., Luyen, T. V, & Thanh, T. T. (2005). Arsenic in groundwaters of the Lower Mekong. Environmental Geochemistry and Health, 27(4), 341–57. http://doi.org/10.1007/s10653-005-3991-x

[57] Stuckey, J. W., Schaefer, M. V, Benner, S. G., & Fendorf, S. (2015). Reactivity and speciation of mineral-associated arsenic in seasonal and permanent wetlands of the Mekong Delta. Geochimica et Cosmochimica Acta, 171, 143–155. http://doi.org/10.1016/j.gca.2015.09.002

[58] Stuckey, J. W., Schaefer, M. V, Kocar, B. D., Benner, S. G., & Fendorf, S. (2015). Arsenic release metabolically limited to permanently water-saturated soil in Mekong Delta. Nature Geoscience, 8, 1–9. http://doi.org/10.1038/NGEO2589

[59] Suess, E., Wasserforschungs-institut, E. Das, Planer-friedrich, B., Suess, E., & Planer-friedrich, B. (2012). Thioarsenate formation upon dissolution of orpiment and arsenopyrite Thioarsenate formation upon dissolution of orpiment and arsenopyrite. Chemosphere, 89(July 2015), 1390–1398. http://doi.org/10.1016/j.chemosphere.2012.05.109

[60] Wang, Y., Pape, P. Le, Morin, G., Suvorova, E., Bártová, B., Asta, M. P., … Bernier-Latmani, R. (n.d.). A carbon nanotube-associated arsenic phosphate in Mekong Delta sediments. Nature Geonature.

[61] Weller, U., Zipprich, M., Sommer, M., Castell, W. Z., & Wehrhan, M. (2007). Mapping Clay Content across Boundaries at the Landscape Scale with Electromagnetic Induction. Soil Science Society of America Journal, 71(6), 1740. http://doi.org/10.2136/sssaj2006.0177

[62] WHO. (2004). Some Drinking-water disinfectants and Contaminants, including Arsenic (Vol. 83).

[63] Winkel, L. H. E., Trang, P., Vi, L., Stengel, C., Amini, M., Nguyen, H., … Berg, M. (2010). Arsenic pollution of groundwater in Vietnam exacerbated by deep aquifer exploitation for more than a century. PNAS, 108(4), 1246–1251. http://doi.org/10.1073/pnas.1011915108/-/DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1011915108

[64] Wolthers, M., Charlet, L., van Der Weijden, C. H., van der Linde, P. R., & Rickard, D. (2005). Arsenic mobility in the ambient sulfidic environment: Sorption of arsenic(V) and arsenic(III) onto disordered mackinawite. Geochimica et Cosmochimica Acta, 69(14), 3483–3492. http://doi.org/10.1016/j.gca.2005.03.003

[65] Ying, S. C., Damashek, J., Fendorf, S., & Francis, C. A. (2015). Indigenous arsenic (V) -reducing microbial communities in redox-fluctuating near-surface sediments of the Mekong Delta. Geobiology. http://doi.org/10.1111/gbi.12152