Isaac Scientific Publishing

Geosciences Research

Earth's Obliquity Oscillations Can Influence Climate Change by Driving Global Volcanic Activity

Download PDF (342.5 KB) PP. 22 - 26 Pub. Date: February 10, 2017

DOI: 10.22606/gr.2017.21004

Author(s)

  • Viacheslav. A. Bezverkhnii*
    Laboratory of Geophysical Fluid Dynamics, A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow, Russia

Abstract

Spectral and wavelet analysis reveal the chain of close phase and coherence relationships at the obliquity frequency in variations of the tilt of the Earth’s rotational axis (obliquity), frequency of large volcanic eruptions (Ef) along the Pacific Ring of Fire, and climate characteristics, represented by the relative content of oxygen-18 (δ18O) in the calcite of fossil benthic foraminifers (prominent LR04 stack), Antarctic and Greenland ice core data. The links revealed show that powerful 41,000-year rhythms in the Plio-Pleistocene climate variations can be caused by geophysical and geochemical effects of global volcanic activity which is induced by the forced obliquity oscillations.

Keywords

The Earth's obliquity, volcanic activity, stable isotopes, climate; wavelet, spectral analysis.

References

[1] J. A. Adhémar, Revolutions de la mer: Déluges Périodiques, Carilian-Goeury et V. Dalmont, Paris, 1842.

[2] J. Croll, Climate and time in their geological relations: a theory of secular changes of theEarth's climate, Edward Stanford, London, 1875.

[3] W. H. Berger, Milankovitch theory - hits and misses, Scripps Institution of Oceanography Technical Report, Scripps Institution of Oceanography UC, San Diego, Ca, 2012.

[4] K. C. Macdonald, , P. J. Fox, R. T. Alexander, R. Pockalny, P. Gente, "Volcanic growth faults and the origin of Pacific abyssal hills", Nature, vol. 380, pp. 125–129, 1996, doi:10.1038/380125a0.

[5] J.R. Petit, I. Basile, A. Leruyuet, D. Raynaud, C. Lorius, J. Jouzel, M. Stievenard, V.Y. Lipenkov, N.I. Barkov, B.B. Kudryashov, M. Davis, E. Saltzman and V. Kotlyakov, "Four climate cycles in Vostok ice core", Nature, vol. 387, pp. 359-360, 1997.

[6] EPICA community members, "Eight Glacial Cycles from an Antarctic Ice Core", Nature, vol. 429, pp. 623-628, 2004, doi: 10.1038/nature02599.

[7] R. N. C. Drysdale, J. C. Hellstrom, G. Zanchetta, A. E. Fallick, M. F. Sánchez Go?i, I. Couchoud, J. McDonald, R. Maas, G. Lohmann, I. Isola, "Evidence for Obliquity Forcing of Glacial Termination II", Science, vol. 325, no. 5947, pp. 1527-1531, 2009, doi: 10.1126/science.1170371.

[8] J. W. Crowley, R. F. Katz, P. Huybers, C. H. Langmuir, S.-H. Park, "Glacial cycles drive variations in the production of oceanic crust", Science, vol. 347, no. 6227, pp. 1237–1240, 2015, doi:10.1126/science.1261508

[9] M. Tolstoy, "Mid-ocean ridge eruptions as a climate valve", Geophysical Research Letters, vol. 42, no. 5, pp. 1346-1351, 2015, doi: 10.1002/2014GL063015.

[10] J. A. Goff, "Comment on Glacial cycles drive variations in the production of oceanic crust", Science, vol. 349, no. 6252, pp. 1065 , 2015, doi: 10.1126/science.aab2350

[11] G. Lohmann, "Atmospheric bridge on orbital time scales", Theoretical and Applied Climatology, vol. 126, pp. 1-10, 2016, doi: 10.1007/s00704-015-1725-2.

[12] A. Berger and M. F. Loutre, "Insolation values for the climate of the last 10 million years", Quaternary Sciences Review, vol. 10, no. 4, pp. 297-317, 1991.

[13] S. Kutterolf, M. Jegen, J. X. Mitrovica, T. Kwasnitschka, A. Freundt and P. J. Huybers, "A detection of Milankovitch frequencies in global volcanic activity", Geology, vol. 41, no. 2, pp. 227–230, 2013.

[14] L. E. Lisiecki, and M. E. Raymo, "A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records", Paleoceanography, vol. 20, PA1003, 2005, doi:10.1029/2004PA001071.

[15] V. A. Bezverkhnii, "Manifestation of characteristic periods of oscillations of the Earth’s orbital parameters in the paleoclimatic data", Doklady Earth Sciences, v. 451, no. 1, pp. 779-783, 2013, doi:10.1134/S1028334X13070209.

[16] P.M. Grootes and M. Stuiver, "Oxygen 18/16 variability in Greenland snow and ice with 10^3 to 10^5-year time resolution", Journal of Geophysical Resources, vol. 102, no. C12, pp. 26455-26470, 1997.

[17] E. J. Brook, S. Harder, J. Severinghaus, E. J. Steig and C. M. Sucher, "On the origin and timing of rapid changes in atmospheric methane during the Last Glacial Period", Global Biogeochemistry Cycles, vol. 14, no. 2, pp. 559-572, 2000, doi: 10.1029/1999GB001182

[18] T. Sowers, R.B. Alley and J. Jubenville, "Ice Core Records of Atmospheric N2O Covering the Last 106,000 Years", Science, vol. 301, no. 5635, pp. 945-948, doi: 10.1126/science.1085293.

[19] Z. J. Wang and X. Lin, "Astronomy and Climate-Earth System: Can Magma Motion under Sun-Moon Gravitation Contribute to Paleoclimatic Variations and Earth’s Heat? ", Advances in Astronomy, vol. 2015, pp. 1-10, 2015. Available: http://dx.doi.org/10.1155/2015/536829.

[20] S. Lovejoy and C. Varotsos, "Scaling regimes and linear/nonlinear responses of last millennium climate to volcanic and solar forcings", Earth System Dynamics, vol. 7, no. 1, pp. 133–150, 2016, doi:10.5194/esd-7-133-2016.