Geosciences Research
Rayleigh Wave in a Micropolar Elastic Medium with Impedance Boundary Conditions
Download PDF (354.8 KB) PP. 6 - 13 Pub. Date: February 10, 2017
Author(s)
- Baljeet Singh*
Department of Mathematics, Post Graduate Government College, Sector-11, Chandigarh - 160 011, India
Abstract
Keywords
References
[1] A. C. Eringen, “Linear theory of micropolar elasticity”, Journal of Mathematics and Mechanics, vol. 15, pp. 909-924, 1966.
[2] A. C. Eringen, “Theory of micropolar elasticity”. Fracture, vol. 2, Academic Press, New York, 1968.
[3] L. Rayleigh, “On waves propagated along the plane surface of an elastic solid”, Proceedings of Royal Society of London, Series A, vol. 17, pp. 4-11, 1885.
[4] S. N. De and P. R. Sengupta, “Surface waves in micropolar elastic media”, Bull. Acad. Pol. Sci. Ser. Sci. Technol., vol. 22, pp. 137-146, 1974.
[5] P. S. Das and P. R. Sengupta, “Surface waves in micropolar thermoelastcity under the influence of gravity”, Proceeding of Indian National Science Academy, vol. 56, pp. 459-471, 1990.
[6] J. L. Nowinski, “On the surface waves in an elastic micropolar and microstretch medium with nonlocal cohesion”, Acta Mechanica, vol. 96, pp. 97-108, 1993.
[7] R. Kumar and B. Singh, “Wave propagation in micropolar generalized thermoelastic body with stretch”, Proceeding of Indian Academy of Sciences (Mathematical Sciences), vol.106, pp. 183-199, 1996.
[8] J. N. Sharma, S. Kumar and Y. D. Sharma, “Propagation of Rayleigh surface waves in microstretch thermoelastic continua under inviscid fluid loadings”, Journal of Thermal Stresses, vol. 31, pp. 18-39, 2008.
[9] R. Kumar, S. Ahuja and S. K. Garg, “Rayleigh waves in isotropic microstretch thermoelastic diffusion solid half space”, Latin American Journal of Solids and Structures, vol. 11, pp. 299-319, 2014.
[10] B. Singh, R. Sindhu and J. Singh, “Rayleigh surface waves in a transversely isotropic microstretch elastic solid half-space”, Journal of . Multidisciplinary Engineering Science and Technology, vol. 2, pp. 1742-1746, 2015.
[11] P. G. Malischewsky, “Surface waves and discontinuities”, Elsevier, Amsterdam, 1987.
[12] E. Godoy, M. Durn and J.-C. Ndlec, “On the existence of surface waves in an elastic half-space with impedance boundary conditions”, Wave Motion, vol. 49, pp. 585-594, 2012.
[13] P.C. Vinh and T.T.T. Hue, “Rayleigh waves with impedance boundary conditions in anisotropic solids”, Wave Motion, vol. 51, pp. 1082-1092, 2014.
[14] B. Singh, “Rayleigh wave in a thermoelastic solid half-space with impedance boundary conditions”, Meccanica, vol. 51, pp. 1135, 2016.
[15] H. F. Tiersten, “Elastic surface waves guided by thin films”, Journal of Applied Physics, vol. 40, pp. 770–789, 1969.
[16] R. D. Gauthier, “Experimental investigation on micropolar media”, in Mechanics of Micropolar Media (eds. O. Brulin and R.K.T. Hsieh), World Scientific, Singapore, 1982.