Isaac Scientific Publishing

Journal of Advances in Nanomaterials

Nitrogen Doped Carbon Nanofibers Derived from Water-Soluble Precursors

Download PDF (781.9 KB) PP. 197 - 207 Pub. Date: December 7, 2017

DOI: 10.22606/jan.2017.24002

Author(s)

  • Lee D. Cremar*
    Mechanical Engineering Department, University of Texas-Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
  • Ben Jones

    Mechanical Engineering Department, University of Texas-Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
  • Nicole Martinez

    Mechanical Engineering Department, University of Texas-Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
  • Gustavo Mejia

    Mechanical Engineering Department, University of Texas-Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
  • Hilario Cortez

    Mechanical Engineering Department, University of Texas-Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
  • Edgar Muñoz

    Mechanical Engineering Department, University of Texas-Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
  • Rocío Nava

    Instituto de Energías Renovables, Universidad Nacional Autónoma de México. Privada Xochicalco s/n, 62580 Temixco, Morelos, México
  • Karen Lozano*

    Mechanical Engineering Department, University of Texas-Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA

Abstract

Nitrogen doped carbon fibers were synthesized from polyvinyl alcohol (PVA), a water soluble precursor. The PVA fine fibers were first developed by centrifugally spinning an aqueous based solution using Forcespinning® technology. The precursor fibers were then exposed to sulfuric acid vapors to partially carbonize and stabilize the fibers for further heat treatment. For nitrogen doping, the fibers were exposed to two different heat treatment routes. One was under a nitrogen atmosphere at 850°C followed by exposure to ammonia gas at 500°C. The second route consisted of heating the treated fibers in pure ammonia gas only, up to 850°C. Both heating schemes resulted in carbon based fibers that showed evidence of nitrogen content as shown by energy-dispersive X-ray spectroscopy. The second route showed an effective doping of the carbon fiber with nitrogen atoms, measured by X-ray photoelectron spectroscopy, which indicated that the nitrogen atoms were fully incorporated into the carbon framework.

Keywords

polyvinyl alcohol, carbon nanofiber, Forcespinning®.

References

[1] W. H. Choi, M. J. Choi, and J. H. Bang. "Nitrogen-Doped Carbon Nanocoil Array Integrated on Carbon Nanofiber Paper for Supercapacitor Electrodes," ACS Applied Materials & Interfaces, vol. 7, no. 34, pp. 19370- 19381, 2015. http://dx.doi.org/10.1021/acsami.5b05527

[2] Y. Du, K. Cai, S. Chen, H. Wang, S. Z. Shen, R. Donelson, and T. Lin. "Thermoelectric Fabrics: Toward Power Generating Clothing," Scientific Reports, vol. 5, no. 6411, pp. 1-6, 2015. http://dx.doi.org/10.1038/srep06411

[3] C. A. Hewitt, D. S. Montgomery, R. L. Barbalace, R. D. Carlson, and D. L. Carroll. "Improved thermoelectric power output from multilayered polyethylenimine doped carbon nanotube based organic composites," Journal of Applied Physics, vol. 115, no. 18, pp. 1845021-1845025, 2014. http://dx.doi.org/10.1063/1.4874375

[4] O. Bubnova, Z. U. Khan, A. Malti, S. Braun, M. Fahlman, M. Berggren, and X. Crispin. "Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene)," Nature Materials, vol. 10, no. 6, pp. 429-433, 2011. http://dx.doi.org/10.1038/nmat3012

[5] S. Han and D. D. L. Chung. "Through-thickness thermoelectric power of a carbon fiber/epoxy composite and decoupled contributions from a lamina and an interlaminar interface," Carbon, vol. 52, pp. 30-39, 2013. http://dx.doi.org/10.1016/j.carbon.2012.08.071

[6] H. J. Goldsmid, "Recent Trends in Thermoelectric Materials Research I - Chapter 1 Introduction," in Semiconductors and Semimetals, vol. 69. Elsevier, 2001, pp. 1-24.

[7] S. K. Bux, R. G. Blair, P. K. Gogna, H. Lee, G. Chen, M. S. Dresselhaus, R. B. Kaner, et al. "Nanostructured Bulk Silicon as an Effective Thermoelectric Material," Advanced Functional Materials, vol. 19, no. 15, pp. 2445- 2452, 2009. http://dx.doi.org/10.1002/adfm.200900250

[8] X. Tan, H. Liu, Y. Wen, H. Lv, L. Pan, J. Shi, and X. Tang. "Optimizing the thermoelectric performance of zigzag and chiral carbon nanotubes," Nanoscale Research Letters, vol. 7, no. 1, pp. 1-7, 2012. http://dx.doi.org/10.1186/1556-276X-7-116.

[9] R. Czerw, M. Terrones, J. C. Charlier, X. Blase, B. Foley, R. Kamalakaran, N. Grobert, et al. "Identification of Electron Donor States in N-Doped Carbon Nanotubes," Nano Letters, vol. 1, no. 9, pp. 457-460, 2001. http://dx.doi.org/10.1021/nl015549q

[10] K. Bradley, S.-H. Jhi, P. G. Collins, J. Hone, M. L. Cohen, S. G. Louie, and A. Zettl. "Is the Intrinsic Thermoelectric Power of Carbon Nanotubes Positive?," Physical Review Letters, vol. 85, no. 20, pp. 4361-4364, 2000. http://dx.doi.org/10.1103/PhysRevLett.85.4361

[11] G. S. Park, J.-S. Lee, S. T. Kim, S. Park, and J. Cho. "Porous nitrogen doped carbon fiber with churros morphology derived from electrospun bicomponent polymer as highly efficient electrocatalyst for Zn-air batteries," Journal of Power Sources, vol. 243, pp. 267-273, 2013. http://dx.doi.org/10.1016/j.jpowsour.2013.06.025

[12] Y. M. Choi, D. S. Lee, R. Czerw, P. W. Chiu, N. Grobert, M. Terrones, M. Reyes-Reyes, et al. "Nonlinear Behavior in the Thermopower of Doped Carbon Nanotubes Due to Strong, Localized States," Nano Letters, vol. 3, no. 6, pp. 839-842, 2003. http://dx.doi.org/10.1021/nl034161n

[13] D. A. Baker and T. G. Rials. "Recent advances in low-cost carbon fiber manufacture from lignin," Journal of Applied Polymer Science, vol. 130, no. 2, pp. 713-728, 2013. http://dx.doi.org/10.1002/app.39273

[14] J. Spender, A. L. Demers, X. Xie, A. E. Cline, M. A. Earle, L. D. Ellis, and D. J. Neivandt. "Method for production of polymer and carbon nanofibers from water-soluble polymers.," Nano letters, vol. 12, pp. 3857-3860, 2012. http://dx.doi.org/10.1021/nl301983d

[15] M. Inagaki, Y. Yang, and F. Kang. "Carbon nanofibers prepared via electrospinning," Advanced Materials, vol. 24, no. 19, pp. 2547–2566, 2012. http://dx.doi.org/10.1002/adma.201104940

[16] L. Feng, S. Li, H. Li, J. Zhai, Y. Song, L. Jiang, and D. Zhu. "Super-hydrophobic surface of aligned polyacrylonitrile nanofibers," Angewandte Chemie International Edition, vol. 41, no. 7, pp. 1221-1223, 2002. http://dx.doi.org/10.1002/1521-3773(20020402)41:7%3C1221::AID-ANIE1221%3E3.0.CO;2-G

[17] C. J. Ellison, A. Phatak, D. W. Giles, C. W. Macosko, and F. S. Bates. "Melt blown nanofibers: Fiber diameter distributions and onset of fiber breakup," Polymer, vol. 48, no. 11, pp. 3306-3316, 2007. http://dx.doi.org/10.1016/j.polymer.2007.04.005

[18] T. Nakajima, K. Kajiwara, and J. E. McIntyre, Advanced Fiber Spinning Technology. WoodHead Publishing Limited, Abington Hall, 2009.

[19] S. Ramakrishna, K. Fujihara, W.-E. Teo, T.-C. Lim, and Z. Ma, An Introduction to Electrospinning and Nanofibers. World Scientific Publishing Co. Pte. Ltd., 2005.

[20] A. Greiner and J. H. Wendorff. "Electrospinning: a fascinating method for the preparation of ultrathin fibers," Angewandte Chemie International Edition, vol. 46, no. 30, pp. 5670-5703, 2007. http://dx.doi.org/10.1002/anie.200604646

[21] K. Sarkar, C. Gomez, S. Zambrano, M. Ramirez, E. D. Hoyos, H. Vasquez, and K. Lozano. "Electrospinning to ForcespinningTM," Materialstoday, vol. 13, pp. 12-14, 2010. http://dx.doi.org/10.1016/S1369-7021(10)70199-1

[22] M. A. Hunt, T. Saito, R. H. Brown, A. S. Kumbhar, and A. K. Naskar. "Patterned functional carbon fibers from polyethylene.," Advanced Materials, vol. 24, no. 18, pp. 2386-2389, 2012. http://dx.doi.org/10.1002/adma.201104551

[23] B. Weng, F. Xu, A. Salinas, and K. Lozano. "Mass production of carbon nanotube reinforced poly(methyl methacrylate) nonwoven nanofiber mats," Carbon, vol. 75, pp. 217-226, 2014. http://dx.doi.org/10.1016/j.carbon.2014.03.056

[24] Y. Rane, A. Altecor, and K. Lozano. "Preparation of superhydrophobic Teflon? AF 1600 sub-micron fibers and yarns using the ForcespinningTM technique," Journal of Engineered Fibers and Fabrics, vol. 8, no. 4, pp. 88-95, 2013. http://www.jeffjournal.org/papers/Volume8/V8I4%2811%29 K. Lozano.pdf

[25] L. D. Cremar, J. Acosta-Martinez, A. Villarreal, A. Salinas, L. Wei, Y. Mao, and K. Lozano. "Multifunctional carbon nanofiber systems mass produced from water soluble polymers," Chemical Fibers International vol. 66, no. 1, pp. 40-42, 2016.

[26] L. D. Cremar, J. Acosta-Martinez, A. Villarreal, A. Salinas, L. Wei, Y. Mao, and K. Lozano. "Multifunctional carbon nanofiber systems mass produced from water soluble polymers and low temperature processes," TextileTechnology: Chemical Fibers International Fiber production. No. 1, Document 6, pp. 1-17, 2016. http://textination.de/de/document/1145985479292875/2.0/.

[27] L. D. Cremar, J. Acosta-Martinez, A. Villarreal, A. Salinas, and K. Lozano. "Mechanical and electrical characterization of carbon nanofibers produced from water soluble precursors," Materials Today Communications, vol. 7, pp. 134-139, 2016. http://dx.doi.org/10.1016/j.mtcomm.2016.04.006

[28] U. K. Fatema, A. J. Uddin, K. Uemura, and Y. Gotoh. "Fabrication of carbon fibers from electrospun poly(vinyl alcohol) nanofibers," Textile Research Journal vol. 81, pp. 659-672, 2010. http://dx.doi.org/10.1177/0040517510385175

[29] Z. R. Ismagilov, A. E. Shalagina, O. Y. Podyacheva, A. V. Ischenko, L. S. Kibis, A. I. Boronin, Y. A. Chesalov, et al. "Structure and electrical conductivity of nitrogen-doped carbon nanofibers," Carbon, vol. 47, no. 8, pp. 1922-1929, 2009. http://dx.doi.org/10.1016/j.carbon.2009.02.034

[30] T. Sharifi, M. Valvo, E. Gracia-Espino, R. Sandstr?m, K. Edstr?m, and T. W?gberg. "Hierarchical selfassembled structures based on nitrogen-doped carbon nanotubes as advanced negative electrodes for Li-ion batteries and 3D microbatteries," Journal of Power Sources, vol. 279, pp. 581-592, 2015. http://dx.doi.org/10.1016/j.jpowsour.2015.01.036

[31] G. Panomsuwan, N. Saito, and T. Ishizaki. "Nitrogen-Doped Carbon Nanoparticle-Carbon Nanofiber Composite as an Efficient Metal-Free Cathode Catalyst for Oxygen Reduction Reaction," ACS Applied Materials & Interfaces, vol. 8, no. 11, pp. 6962-6971, 2016. http://dx.doi.org/10.1021/acsami.5b10493

[32] F. Lai, Y.-E. Miao, Y. Huang, Y. Zhang, and T. Liu. "Nitrogen-Doped Carbon Nanofiber/Molybdenum Disulfide Nanocomposites Derived from Bacterial Cellulose for High-Efficiency Electrocatalytic Hydrogen Evolution Reaction," ACS Applied Materials & Interfaces, vol. 8, no. 6, pp. 3558-3566, 2016. http://dx.doi.org/10.1021/acsami.5b06274

[33] A. Hachimi, B. Merzougui, A. Hakeem, T. Laoui, G. M. Swain, Q. Chang, M. Shao, et al. "Synthesis of Nitrogen-Doped Carbon Nanotubes Using Injection-Vertical Chemical Vapor Deposition: Effects of Synthesis Parameters on the Nitrogen Content," Journal of Nanomaterials, vol. 2015, no. 453725, pp. 1-9, 2015. http://dx.doi.org/10.1155/2015/453725

[34] L-C. Chen, P-Y. Peng, L-F. Lin, T. C. K. Yang, and C.-M. Huang. "Facile Preparation of Nitrogen-Doped Activated Carbon for Carbon Dioxide Adsorption," Aerosol and Air Quality Research, vol. 14, no. 3, pp. 916-927, 2014. http://dx.doi.org/10.4209/aaqr.2013.03.0089

[35] A. E. Shalagina, Z. R. Ismagilov, O. Y. Podyacheva, R. I. Kvon, and V. A. Ushakov. "Synthesis of nitrogencontaining carbon nanofibers by catalytic decomposition of ethylene/ammonia mixture," Carbon, vol. 45, no. 9, pp. 1808-1820, 2007. http://dx.doi.org/10.1016/j.carbon.2007.04.032.

[36] W. H. Lee, J. G. Lee, and P. J. Reucroft. "XPS study of carbon fiber surfaces treated by thermal oxidation in a gas mixture of O2/(O2+N2)," Applied Surface Science, vol. 171, no. 1-2, pp. 136-142, 2001. http://dx.doi.org/10.1016/S0169-4332(00)00558-4

[37] A. Bratt and A. R. Barron. "XPS of Carbon Nanomaterials," Available: http://cnx.org/content/m34549/1.2/

[38] J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy. Perkin-Elmer Corporation, 1992.

[39] E. Andreoli and A. R. Barron. "Correlating Carbon Dioxide Capture and Chemical Changes in Pyrolyzed Polyethylenimine-C60," Energy & Fuels, vol. 29, no. 7, pp. 4479-4487, 2015. http://dx.doi.org/10.1021/acs.energyfuels.5b00778

[40] H. Kiuchi, T. Kondo, M. Sakurai, D. Guo, J. Nakamura, H. Niwa, J. Miyawaki, et al. "Characterization of nitrogen species incorporated into graphite using low energy nitrogen ion sputtering," Physical Chemistry Chemical Physics, vol. 18, no. 1, pp. 458-465, 2016. http://dx.doi.org/10.1039/c5cp02305j

[41] K. Artyushkova, B. Kiefer, B. Halevi, A. Knop-Gericke, R. Schlogl, and P. Atanassov. "Density functional theory calculations of XPS binding energy shift for nitrogen-containing graphene-like structures," Chemical Communications, vol. 49, no. 25, pp. 2539-2541, 2013. http://dx.doi.org/10.1039/c3cc40324f

[42] J. Casanovas, J. M. Ricart, J. Rubio, F. Illas, and J. M. Jiménez-Mateos "Origin of the Large N 1s Binding Energy in X-ray Photoelectron Spectra of Calcined Carbonaceous Materials," Journal of the American Chemical Society, vol. 118, no. 34, pp. 8071-8076, 1996. http://dx.doi.org/10.1021/ja960338m

[43] W.-H. Chiang, G.-L. Chen, C.-Y. Hsieh, and S.-C. Lo. "Controllable boron doping of carbon nanotubes with tunable dopant functionalities: an effective strategy toward carbon materials with enhanced electrical properties," RSC Advances, vol. 5, no. 118, pp. 97579-97588, 2015. http://dx.doi.org/10.1039/c5ra20664b.