Isaac Scientific Publishing

Journal of Advances in Nanomaterials

Low Cost Pyrite (Fes2) Nanorod Sensitized Solar Cell​

Download PDF (594.6 KB) PP. 60 - 64 Pub. Date: March 3, 2017

DOI: 10.22606/jan.2017.21006

Author(s)

  • Namanu P*
    Department of Metallurgical and Materials Engineering, National Institute of Technology Karnataka, Surathkal, India 575025
  • M. Jayalakshmi
    Department of Metallurgical and Materials Engineering, National Institute of Technology Karnataka, Surathkal, India 575025
  • K. Udayabhat
    Department of Metallurgical and Materials Engineering, National Institute of Technology Karnataka, Surathkal, India 575025

Abstract

The fabrication of a low cost, sustainable semiconductor sensitised solar cell is carried out using FeS2 nanorods as the sensitising material over an electrode coated by TiO2 nanoparticles. Though the semiconductor sensitised cells are eloquently researched, NR structures as a sensitising material are still not fully investigated despite their features potentially beneficial for accelerating the performance of the devices. The pyrite NR based solar cell is having a notable open circuit voltage of 0.16 V, a short circuit current of 3.9 mA/cm2 and an overall conversion efficiency of 0.63%. A simple design and fabrication approach like doctor blading, dip coating is employed throughout the work with an objective to minimise the fabrication cost as much as possible.

Keywords

Pyrite solar cells; FeS2, nanorods, cheap photovoltaics, photoelctrochemical cell.

References

[1] A. Ennaoui, H. Tributsch, Iron sulphide solar cells, Sol. Energ. Mat. Sol. C. 13(2), 197-200 (1984).

[2] T. Hong, Low-temperature synthesis of size-controllable anatase TiO2 microspheres and interface optimization of bi-layer anodes for high efficiency dye sensitized solar cells, Electrochim. Acta. 137, 17-25 (2014).

[3] J.M. Lucas, C.C. Tuan, D.L. Sebastien, K.B. David, R. Qiao, W. Yang, A. Lanzara, A.P. Alivisatos, Ligand-controlled colloidal synthesis and electronic structure characterization of cubic iron pyrite (FeS2) nanocrystals, Chem. Mater. 25, 1615-1620 (2013).

[4] Y. Bai, J. Yeom, M. Yang, S.H. Cha, K. Sun, and A.N. Kotov, J. Phys. Chem. C 117, 62567-2573 (2013).

[5] A. Ennaoui, S. Fiechter, G. Smestad and H. Tributsch, Proc. 1st World Renewable Energy Congress, Reading, UK, Pergamon Press, City pp. 458 1990.

[6] T. Dittrich, A. Belaidi, A. Ennaoui, Concepts of inorganic solid-state nanostructured solar cells, Sol. Energ. Mater. Sol. C. vol. 95, 1527-1536 (2011).

[7] Y. C. Shen, H. Deng, J. Fang, and Z. Lu, Co-sensitization of microporous TiO2 electrodes with dye molecules and quantum-sized semiconductor particles, Colloid. Surface. A 175, 135–140 (2000).

[8] G. Chatzitheodorou, S. Fiechter, M. Kunst, J. Luck, and H.Tributsch, Low temperature chemical preparation of semiconducting transition metal chalcogenide films for energy conversion and storage, lubrication and surface protection, Mater. Res. Bull. 23, 1261-1271 (2003).

[9] N. Guijarro, J.M. Campina, Q. Shen,T. Toyoda, T. Lana-Villarreala, R. Gómez, Uncovering the Role of the ZnS Treatment in the Performance of Quantum Dot Sensitized Solar Cells, Phys. Chem. Chem. Phys. 13, 12024–12032 (2011).

[10] J.T Margraf, A. Ruland, V. Sgobba, D.M. Guldi, T. Clark, Quantum-Dot-Sensitized Solar Cells: Understanding Linker Molecules through Theory and Experiment, Langmuir 29, 2434–2438 (2013).

[11] H. McDaniel, N. Fuke, N.S. Makarov, J.M. Pietryga, V.I. Klimov, An Integrated Approach to Realizing High-Performance Liquid-Junction Quantum Dot Sensitized Solar Cells, Nat. Commun. 4, 2887-2896 (2013).

[12] K. Sunita, K. Simanta, P. Amitava, K.G. Ashok, Band gap tuning of ZnO/In2S3 core/shell nanorod arrays for enhanced visible-light-driven photocatalysis, J. Phys. Chem. C 117, 5558-5567 (2013).

[13] M.S. Eichfeld, Synthesis and characterization of silicon nanowire arrays for photovoltaic applications. Diss. The Pennsylvania State University 2009.

[14] Y.H.J. Lee, Z. Li, L. Fu, P. Parkinson, K. Vora, H.H. Tan, C. Jagadish, Improved GaAs nanowire solar cells using AlGaAs for surface passivation, Optoelectronic and Microelectronic Materials & Devices, Proceedings, COMMAD 131-132 (2012).

[15] J. Bai, Q. Wang, T. Wang, Characterization of InGaN-based nanorod light emitting diodes with different indium compositions, J. Appl. Phys. 111, 113103(2012).

[16] P. Namanu, M. Jayalakshmi, K. Udayabhat, Low temperature synthesis of Iron pyrite nanorods for photovoltaic applications, J. Mater. Sci: Mater. Electron. 26, 8534-8539 (2015).

[17] M.M. Ba-Abbad, A.A.H. Kadhum, A.B. Mohamad, M.S. Takriff, K. Sopian, Int. J. Electrochem. Sci. 7, 4871-4888 (2012).

[18] S. Ruoshi, M.K.Y. Chan, G. Ceder, First-principles electronic structure and relative stability of pyrite and marcasite: Implications for photovoltaic performance, Phys. Rev. B 83, 235311 (2011).

[19] A. Krishnamoorthy, F.W. Herbert , S. Yip, K.J. Van Vliet , B. Yildiz, Electronic states of intrinsic surface and bulk vacancies in FeS2, J. Phys. Condens. Matter. 25, 045004 (2012).