Journal of Advances in Nanomaterials
Size Dependent Ion Diffusion in Na2Ti3O7 and Na2Ti6O13
Download PDF (2398.8 KB) PP. 39 - 48 Pub. Date: September 12, 2016
Author(s)
- Yuya Fukuzumi1
1Graduate School of Pure and Applied Science, University of Tsukuba, Tsukuba 305-8571, Japan - Wataru Kobayashi1234*
2Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba 305-8577, Japan - Yutaka Moritomo1234*
3Center for Integrated Research in Fundamental Science and Engineering (CiRfSE), University of Tsukuba,Tsukuba 305-8571, Japan
Abstract
Keywords
References
[1] M. Armand, and J. M. Trascon, "Building better batteries", Nature, vol 451, pp. 652 - 657, 2008.
[2] M. R. Palacin, "Recent advances in rechargeable battery materials: a chemist’s perspective", Chem. Soc. Rev., vo;. 38, no. 9, pp. 2565 - 2575, 2009.
[3] K. C. Kam, and M. M. Doeff, "Electrode materials for lithium ion batteries", Mater. Matters., vol. 7, no. 4, pp. 56 -62, 2012.
[4] J. Liu, K. Song, P. A. Aken, J. Maier, and Y. Yu, "Self-supported Li4Ti5O12-C nanotube arrays as high-rate and long-life anode materials for flexible Li-ion batteries", Nano Lett., vol. 14 no. 5, pp. 2597 - 2603, 2014.
[5] J. Liu, K. Tang, K. Song, P. A. Aken, Y. Yu, and J. Maier, "Tiny Li4Ti5O12 nanoparticles embedded in carbon nanofibers as high-capacity and long-life anode materials for both Li-ion and Na-ion batteries", Phys. Chem. Chem. Phys., vol. 15 no 48. pp. 20813 - 20818, 2013.
[6] G. G. Amatucci, F. Badway, A. D. Pasquier, and T. Zheng, "An asymmetric hybrid nonaqueous energy storage cell", J. Electrochem. Soc., vol. 148, no. 8, pp. A930 - A939, 2001.
[7] E. Freg, R. J. Gummow, A. de Kock, and M. M. Thackeray, "Spinel anodes for lithium A]ion batteries", J. Electrochem. Soc., vol. 141, no. 11, pp. L147 - L150, 1994.
[8] M. M. Doedd, J. Cabana, and M. Shirpour, "Titanate anodes for sodium ion batteries", J. Inorg. Organomet. Polym., vol. 24, no. 1, pp. 5 - 14, 2014.
[9] P. Senguttuvan, G. Rousse, V. Seznec, J. M. Tarascon, and M. R. Palacin, "Na2Ti3O7: Lowest voltage ever reported oxide insertion electrode for sodium ion batteries", Chem. Mater., vol. 23, no. 13, pp. 4109 - 4011, 2011.
[10] G. Rousse, M. E. A. Dompablo, P. Senguttuvan, A. Ponrouch, J. M. Tarascon, and M. R. Palacin, "Rationalization of Intercalation Potential and Redox Mechanism for A2Ti3O7 (A = Li, Na)", Chem. Mater., vol. 25 no. 24, pp. 4946 - 4956, 2013.
[11] H. Pan, X. Lu, X. Yu, Y.-S. Hu, H. Li, X.-Q, Yang, and L. Chen, "Sodium storage and transport properties in layered Na2Ti3O7 for room-temperature sodium-ion batteries", Adv. Energy Mater., vol. 3, no. 9, pp. 1186 - 1194, 2013.
[12] A. Rudola, K. Saravanan, C. W. Mason, and P. Balaya, "Na2Ti3O7: an intercalation based anode for sodium-ion battery applications", J. Mater. Chem. A, vol.1, no. 7, 2653 - 2662, 2013.
[13] J. Xu, C. Ma, M. Balasubramanian, and Y. S. Meng, "Understanding Na2Ti3O7 as an ultra-low voltage anode material for a Na-ion battery", Chem. Comm., vol. 50, no. 83, pp. 12564 - 12567, 2014.
[14] K. Shen, and M. Wagemaker, "Na2+xTi6O13 as potential negative electrode material for Na-ion batteries", Inorg. Mater., vol. 53, no. 16, pp. 8250 - 8256, 2014.
[15] Y. Wang, H. Zhang, X. Yao, and H. Zhao, "Theoretical understanding and prediction of lithiated sodium hexatitanates", Appl. Mater. Interface, vol. 5, no. 3, pp. 1108 - 1112, 2013.
[16] O. V. Yakubovich, and V. V. Kireev, "Refinement of the crystal structure of Na2Ti3O7", Crystallogr. Reports, vol. 48, no. 1, pp. 24 - 28, 2003.
[17] K. Chiba, N. Kijima, Y. Takahashi, Y. Idemoto, and J. Akimoto, "Synthesis, structure, and electrochemical Li-ion intercalation properties of Li2Ti3O7 with Na2Ti3O7-type layered structure", Solid State Ionics, vol. 178, no. 33 - 34, pp. 1725 - 1730, 2008.
[18] S. Kikkawa F. Yasuda, and M. Koizumi, "Ionic conductivities of Na2Ti3O7, K2Ti4O9 and their related materials", Mater. Res. Bull., vol. 20, no. 10, pp. 1221 - 1227, 1985.
[19] S. Anderson, and A. D. Wadsley, "The structures of Na2Ti6O13 and Rb2Ti6O13 and the alkali metal titanates", Acta Cryst., vol. 15, pp. 194 - 201, 1962.
[20] R. Dominko, E. Baudrin, P. Umek, D. Arcon, M. Gaberscek, and J. Jamnik "Reversible lithium insertion into Na2Ti6O13 structure", Electrochem. Commun., vol. 174, no. 4, pp. 673 - 677, 2007.
[21] R. Dominko, L. Dupont, M. Gaberscek, J. Jamnik, and E. Baudrin, "Alkali hexatitanates A2Ti6O13 (A = Na, K) as host structure for reversible lithium insertion", J. Power Sources, vol. 174, no. 2, pp. 1172 - 1176, 2007.
[22] E. Nishibori, M. Takata, K. Kato, M. Sakata, Y. Kubota, S. Aoyagi, Y. Kuroiwa, M. Yamakawa, and N. Ikeda, "The large Debye-Scherrer camera installed at SPring-8 BL02B2 for charge density studies", Nuclear Inst. Methods, vol. 467, pp. 1045 - 1048, (2001).
[23] F. Izumi, and K. Momma, "Three-Dimensional Visualization in Powder Diffraction", Solid State Phenom., vol. 130, pp. 15 - 20, 2007.
[24] M. Takachi, Y. Fukuzumi, and Y. Moritomo, "Concentration dependence of Li+/Na+ diffusion in manganese hexacyanoferrates", Jpn. J. Appl. Phys., vol. 55, no. 6, pp. 067101, 2016.