Isaac Scientific Publishing

Journal of Advances in Nanomaterials

Size Dependent Ion Diffusion in Na2Ti3O7 and Na2Ti6O13

Download PDF (2398.8 KB) PP. 39 - 48 Pub. Date: September 12, 2016

DOI: 10.22606/jan.2016.11005

Author(s)

  • Yuya Fukuzumi1
    1Graduate School of Pure and Applied Science, University of Tsukuba, Tsukuba 305-8571, Japan
  • Wataru Kobayashi1234*
    2Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba 305-8577, Japan
  • Yutaka Moritomo1234*
    3Center for Integrated Research in Fundamental Science and Engineering (CiRfSE), University of Tsukuba,Tsukuba 305-8571, Japan

Abstract

Titanates are promising anode materials for the lithium-ion (LIBs) and sodium-ion (SIBs) secondary batteries due to their high discharge capacity and low voltage. By means of complex impedance spectroscopy (CIS), we investigated the ion dependence of diffusion dynamics in the same host framework, i.e., Na2Ti3O7 and Na2Ti6O13. In Na2Ti3O7 with a stepped layered framework, the diffusion constant (DNa = 2.07×10−10cm2/s) of Na+ is comparable to that (DLi = 2.07×10−10cm2/s) of Li+ at ca. 324 K. In Na2Ti6O13 with a tunneled structure, DNa (= 0.16×10-10cm2/s) is much lower than DLi (= 0.64×10-10cm2/s) at 298 K. We will discuss the size dependent ion diffusion in terms of the nanostructure of Na2Ti3O7 and Na2Ti6O13.

Keywords

Secondary batteries, anode materials, titanates, ion diffusion, nanomaterial

References

[1] M. Armand, and J. M. Trascon, "Building better batteries", Nature, vol 451, pp. 652 - 657, 2008.

[2] M. R. Palacin, "Recent advances in rechargeable battery materials: a chemist’s perspective", Chem. Soc. Rev., vo;. 38, no. 9, pp. 2565 - 2575, 2009.

[3] K. C. Kam, and M. M. Doeff, "Electrode materials for lithium ion batteries", Mater. Matters., vol. 7, no. 4, pp. 56 -62, 2012.

[4] J. Liu, K. Song, P. A. Aken, J. Maier, and Y. Yu, "Self-supported Li4Ti5O12-C nanotube arrays as high-rate and long-life anode materials for flexible Li-ion batteries", Nano Lett., vol. 14 no. 5, pp. 2597 - 2603, 2014.

[5] J. Liu, K. Tang, K. Song, P. A. Aken, Y. Yu, and J. Maier, "Tiny Li4Ti5O12 nanoparticles embedded in carbon nanofibers as high-capacity and long-life anode materials for both Li-ion and Na-ion batteries", Phys. Chem. Chem. Phys., vol. 15 no 48. pp. 20813 - 20818, 2013.

[6] G. G. Amatucci, F. Badway, A. D. Pasquier, and T. Zheng, "An asymmetric hybrid nonaqueous energy storage cell", J. Electrochem. Soc., vol. 148, no. 8, pp. A930 - A939, 2001.

[7] E. Freg, R. J. Gummow, A. de Kock, and M. M. Thackeray, "Spinel anodes for lithium A]ion batteries", J. Electrochem. Soc., vol. 141, no. 11, pp. L147 - L150, 1994.

[8] M. M. Doedd, J. Cabana, and M. Shirpour, "Titanate anodes for sodium ion batteries", J. Inorg. Organomet. Polym., vol. 24, no. 1, pp. 5 - 14, 2014.

[9] P. Senguttuvan, G. Rousse, V. Seznec, J. M. Tarascon, and M. R. Palacin, "Na2Ti3O7: Lowest voltage ever reported oxide insertion electrode for sodium ion batteries", Chem. Mater., vol. 23, no. 13, pp. 4109 - 4011, 2011.

[10] G. Rousse, M. E. A. Dompablo, P. Senguttuvan, A. Ponrouch, J. M. Tarascon, and M. R. Palacin, "Rationalization of Intercalation Potential and Redox Mechanism for A2Ti3O7 (A = Li, Na)", Chem. Mater., vol. 25 no. 24, pp. 4946 - 4956, 2013.

[11] H. Pan, X. Lu, X. Yu, Y.-S. Hu, H. Li, X.-Q, Yang, and L. Chen, "Sodium storage and transport properties in layered Na2Ti3O7 for room-temperature sodium-ion batteries", Adv. Energy Mater., vol. 3, no. 9, pp. 1186 - 1194, 2013.

[12] A. Rudola, K. Saravanan, C. W. Mason, and P. Balaya, "Na2Ti3O7: an intercalation based anode for sodium-ion battery applications", J. Mater. Chem. A, vol.1, no. 7, 2653 - 2662, 2013.

[13] J. Xu, C. Ma, M. Balasubramanian, and Y. S. Meng, "Understanding Na2Ti3O7 as an ultra-low voltage anode material for a Na-ion battery", Chem. Comm., vol. 50, no. 83, pp. 12564 - 12567, 2014.

[14] K. Shen, and M. Wagemaker, "Na2+xTi6O13 as potential negative electrode material for Na-ion batteries", Inorg. Mater., vol. 53, no. 16, pp. 8250 - 8256, 2014.

[15] Y. Wang, H. Zhang, X. Yao, and H. Zhao, "Theoretical understanding and prediction of lithiated sodium hexatitanates", Appl. Mater. Interface, vol. 5, no. 3, pp. 1108 - 1112, 2013.

[16] O. V. Yakubovich, and V. V. Kireev, "Refinement of the crystal structure of Na2Ti3O7", Crystallogr. Reports, vol. 48, no. 1, pp. 24 - 28, 2003.

[17] K. Chiba, N. Kijima, Y. Takahashi, Y. Idemoto, and J. Akimoto, "Synthesis, structure, and electrochemical Li-ion intercalation properties of Li2Ti3O7 with Na2Ti3O7-type layered structure", Solid State Ionics, vol. 178, no. 33 - 34, pp. 1725 - 1730, 2008.

[18] S. Kikkawa F. Yasuda, and M. Koizumi, "Ionic conductivities of Na2Ti3O7, K2Ti4O9 and their related materials", Mater. Res. Bull., vol. 20, no. 10, pp. 1221 - 1227, 1985.

[19] S. Anderson, and A. D. Wadsley, "The structures of Na2Ti6O13 and Rb2Ti6O13 and the alkali metal titanates", Acta Cryst., vol. 15, pp. 194 - 201, 1962.

[20] R. Dominko, E. Baudrin, P. Umek, D. Arcon, M. Gaberscek, and J. Jamnik "Reversible lithium insertion into Na2Ti6O13 structure", Electrochem. Commun., vol. 174, no. 4, pp. 673 - 677, 2007.

[21] R. Dominko, L. Dupont, M. Gaberscek, J. Jamnik, and E. Baudrin, "Alkali hexatitanates A2Ti6O13 (A = Na, K) as host structure for reversible lithium insertion", J. Power Sources, vol. 174, no. 2, pp. 1172 - 1176, 2007.

[22] E. Nishibori, M. Takata, K. Kato, M. Sakata, Y. Kubota, S. Aoyagi, Y. Kuroiwa, M. Yamakawa, and N. Ikeda, "The large Debye-Scherrer camera installed at SPring-8 BL02B2 for charge density studies", Nuclear Inst. Methods, vol. 467, pp. 1045 - 1048, (2001).

[23] F. Izumi, and K. Momma, "Three-Dimensional Visualization in Powder Diffraction", Solid State Phenom., vol. 130, pp. 15 - 20, 2007.

[24] M. Takachi, Y. Fukuzumi, and Y. Moritomo, "Concentration dependence of Li+/Na+ diffusion in manganese hexacyanoferrates", Jpn. J. Appl. Phys., vol. 55, no. 6, pp. 067101, 2016.