Isaac Scientific Publishing

Journal of Advances in Nanomaterials

First-Principles Study on Electronic Structures of FAPbX3 (X = Cl, Br, I) Hybrid Perovskites

Download PDF (1035 KB) PP. 33 - 38 Pub. Date: September 12, 2016

DOI: 10.22606/jan.2016.11004

Author(s)

  • Y. Y. Pan1,2, Y. H. Su1*, C. H. Hsu2, L. W. Huang1,2, K. P. Dou2, C. C. Kaun2*
    1Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan
    2Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan

Abstract

Using first principles calculations, we investigate the geometric and electronic structures of organic–inorganic hybrid perovskite, FAPbX3 (FA = CH(NH2)2+; X = Cl, Br, I). Since the organic molecule in the centre of the 3D hybrid perovskite is the key for its characteristics, here we compare FAPbX3 with MAPbX3 (MA = CH3NH3+). The band gap of the former is smaller than the latter. Particularly, the calculated band gap of FAPbI3, 1.40 eV, is close to the experimental data, 1.41 eV. Furthermore, we analyze their orbitals, density of states and the spatial distribution of the charges, revealing that FAPbX3 can produce and transfer more excitons than MAPbX3 does.

Keywords

Solar cell, formamidinium, methylammonium, geometric structure, band gap.

References

[1] M. Saliba, T. Matsui, J. Y. Seo, K. Domanski, J. P. Correa-Baena, M. K. Nazeeruddin, and M. Grätzel, “Cesiumcontaining triple cation perovskite solar cells: improved stability, reproducibility and high efficiency,” Energy & Environmental Science, vol. 9, pp.1989-1997, 2016.

[2] A. Kojima, M. Ikegami, K. Teshima, and T. Miyasaka, “Highly luminescent lead bromide perovskite nanoparticles synthesized with porous alumina media,” Chemistry Letters, vol. 41, pp. 397-399, 2012.

[3] J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, and N. G. Park, “6.5% efficient perovskite quantum-dot-sensitized solar cell,” Nanoscale, vol. 3, pp. 4088-4093, 2011.

[4] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science, vol. 338, pp. 643-647, 2012.

[5] R. F. Service, “Cesium fortifies next-generation solar cells,” Science, vol. 351, pp. 113, 2016.

[6] N. K. Kumawat, A. Dey , A. Kumar, S. P. Gopinathan, K. L. Narasimhan, and D. Kabra, ”Band Gap Tuning of CH3NH3Pb(Br1–xClx)3 Hybrid Perovskite for Blue Electroluminescence,” Appl. Mater. Interfaces, vol. 7, pp.13119– 13124, 2015.

[7] T. Baikie, Y. N. Fang, J. M. Kadro, M. Schreyer, F. X. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, “Synthesis and Crystal Chemistry of the Hybrid Perovskite (CH3NH3)PbI3 for Solid-State Sensitised Solar Cell Applications,” J Mater Chem A, vol. 1, pp. 5628?5641, 2013.

[8] A. Binek, F. C. Hanusch, P. Docampo, and T. Bein, “Stabilization of the Trigonal High-Temperature Phase of Formamidinium Lead Iodide,” J Phys Chem Lett, vol. 6, pp.1249-1253, 2015.

[9] M. Ye, X. Wen , M. Wang, J. Iocozzia, N. Zhang, C. Lin, and Z. Lin, “Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes,” Mater Today, vol. 18, pp.155-162, 2014.

[10] M. A. Loi and J. C. Hummelen, “Hybrid solar cells: Perovskites under the Sun,” Nature Mater, vol. 12, pp. 1087–1089, 2013.

[11] I. Deretzis, A. Alberti, G. Pellegrino, E. Smecca, F. Giannazzo, N. Sakai, T. Miyasaka, and A. L. Magna, “Atomistic origins of CH3NH3PbI3 degradation to PbI2 in vacuum,” Appl Phys Lett, vol. 106, pp. 131904, 2015.

[12] A. Amat, E. Mosconi, E. Ronca, C. Quarti, P. Umari, M. K. Nazeeruddin, M. Gratzel, and F. D. Angelis, “ Cation-Induced Band-Gap Tuning in Organohalide Perovskites: Interplay of Spin?Orbit Coupling and Octahedra Tilting,” Nano Lett, vol. 14, pp. 3608-3616, 2014.

[13] E. Smecca, Y. Numata, I. Deretzis, G. Pellegrino, S. Boninelli, T. Miyasaka, A. L. Magnaa, and A. Alberti, “Stability of solution-processed MAPbI3 and FAPbI3 layers,” Phys Chem Chem Phys, vol. 18, pp. 13413-13422, 2016.

[14] J. Seo, J. H. Noh, and S. I. Seok, “Rational Strategies for Efficient Perovskite Solar Cells,” Accounts of chemical research, vol. 49, pp. 562-572, 2016.

[15] G. Giorgi, J. I. Fujisawa, H. Segawa, and K. Yamashita, “Cation Role in Structural and Electronic Properties of 3D Organic–Inorganic Halide Perovskites: A DFT Analysis,” J Phys Chem C, vol. 118, pp. 12176-12183, 2014.

[16] W. Setyawan and S. Curtarolo, “High-throughput electronic band structure calculations: Challenges and tools,” Computational Materials Science, vol. 49, pp. 299-312, 2010.

[17] A. A. Zhumekenov, M. I. Saidaminov, M. A. Haque, E. Alarousu, S. P. Sarmah, B. Murali, I. Dursun, X. H. Miao, A. L. Abdelhady, and T. Wu, “Formamidinium Lead Halide Perovskite Crystals with Unprecedented Long Carrier Dynamics and Diffusion Length,” ACS Energy Letters, vol. 1, pp. 32-37, 2016.

[18] W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, “A High-performance photovoltaic perovskite layers fabricated through intramolecular exchange,” Science, vol. 348, pp.1234-1237, 2015.

[19] F. Brivio, K. T. Butler, A. Walsh, and M. V. Schilfgaarde, “Relativistic quasiparticle self-consistent electronic structure of hybrid halide perovskite photovoltaic absorbers,” Physical Review B, vol. 89, pp.155204, 2014.

[20] P. Umari, E. Mosconi, and F. D. Angelis, “Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications,” Scientific reports, vol. 4, pp. 4467, 2014.

[21] Y. Y. Pan, Y. H. Su, C. H. Hsu, L. W. Huang, and C. C. Kaun, “The Electronic Structure of Organic- Inorganic Hybrid Perovskite Solar Cell: A First-Principles Analysis,” Comput Mater Sci, vol. 117, pp. 573-578, 2016.