# Current Works in Mineral Processing

### Review on the Applications of Apparent Mean Shape Factor on the Integration of Coarse and Fine PSDs Measured by Different Techniques: Quartz Example

Download PDF (2081.7 KB) PP. 30 - 42 Pub. Date: March 25, 2019

### Author(s)

**U. Ulusoy**^{1,*}, M. Yekeler^{1}, O.Y. Gülsoy^{2}

^{1}Department of Mining Engineering, Sivas Cumhuriyet University, TR-58140, Sivas, Turkey**N. A. Aydoğan**^{2}, C. Biçer^{1}and, Z. Gülsoy^{1}

^{2}Department of Mining Engineering, Hacettepe University, TR-06532, Ankara, Turkey

### Abstract

### Keywords

### References

[1] Pabst W. & Gregorová, E., (2007). ICT Prague 2007, Characterization of particles and particle systems.

[2] Allen, T. (1990). Particle Size Measurement, 4th ed., New York: Chapmann and Hall.

[3] Jillavenkatesa, A., Dapkunas, S. J., & Lum, L. H., (2001). Particle Size Characterization, Special Publication 960-1, NIST Recommended Practice Guide, p. 27.

[4] Horiba Instruments Inc , (2010). A Guidebook to particle size analysis

[5] Stanford, R.E., & Patterson, B.R., (2007). Controlled particle size distributions using Linear Programming, Powder Technology, 176, 114–122.

[6] Cirulis, D., (2017). Particle Size Tracking System vs. Traditional Measurement Techniques, E&MJ, March, p. 58

[7] Kelly, E.G. & Spottiswood, D.J. (1982). Introduction to mineral processing, John Wiley &Sons Inc., New York, USA, pp. 21–22.

[8] Wills, B.A. & Napier-Munn, T., (2006). Wills’ Mineral Processing Technology, An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery, 7th revised ed. Elsevier Publisher,

[9] Ikechuks, G. A., (2011). The effects of particle size on the wettability of Akwuke coal using continuous flow technique, Proceedings of the World Congress on Engineering and Computer Science, San Francisco, USA, vol. 2, pp. 237–247.

[10] Kðk, M.V., Özbas, E., Hicyilmaz, C., & Karacan, Ö., (1997). Effect of particle size on the thermal and combustion properties of coal, Thermochim. Acta, 302, 125–130.

[11] Mohns, C.A., (1997). The Effects of Particle Size on the Kinetics of Coal Froth Flotation Master’s thesis Queen’s University, Ontario, Canada.

[12] Boylu, F., Dincer, H., & Atesok, G., (2004). Effect of coal particle size distribution, volume fraction and rank on the rheology of coal–water slurries, Fuel Process. Technol., 85, 241–250.

[13] Brikci-Nigassa, M., Garbett, E.S., & Hedley, A.B., (1982). The effect of coal particle size on the performance of a fluidised bed coal combustor, Prepr. Pap. Am. Chem. Soc. Div. Fuel Chem. (U. S.) 27.

[14] Schneider, C. L., Neumann, R. & Souza, A. S. (2007). Determination of the distribution of size of irregularly shaped particles from laser diffractometer measurements, Int. J. Miner. Process. 82, 30–40.

[15] Zhang, Z. Yang, J. Ding, L. Zhao, Y., (2012). An improved estimation of coal particle mass using image analysis, Powder Technol. 229, 178–184.

[16] Ko, Y.-D. & Shang, H., (2011). Time delay neural network modeling for particle size in SAG mills, Powder Technol. 205 250–262.

[17] Eshel, G. Levy, G.J., Mingelgrin, U., & Singer, M.J., (2004). Critical evaluation of the use of laser diffraction for particle-size distribution analysis, Soil Sci. Soc. Am. J. 68 (3) 736–743.

[18] Ghasemy, A., Rahimi, E., & Malekzadeh, A., (2019). Introduction of a new method for determining the particlesize distribution of fine-grained soils, Measurement, 132, 79–86.

[19] Oja, M., Tuunila, R., 2000. The influence of comminution method to particle shape, Proceedings of the XXI Int. Min. Proc. Cong., Rome, Italy, July 23–27, p. C4-64-70.

[20] Johnston, R.G., & Reuter, J. M. (1993). Mineral uses in paint and their effect on quality, SME Annual Meeting, Reno, Nevada, 15-18 February.

[21] Ulusoy, U., Yekeler, M., Biçer, C. & Gülsoy, Z., (2006). Combination of the Particle Size Distributions of Some Industrial Minerals Measured by Andreasen Pipette and Sieving Techniques, Particle & Particle Systems Characterization, 23 (6) 448-456.

[22] Ulusoy,U., Gulsoy, Ö. Y., Aydogan, N. A., & Yekeler, M., (2008). Combination of laser diffraction and sieve size distribution by determining the mean shape factors, Particulate Science and Technology, 26, (2) 158-168.

[23] Leschonski, K., (1979). Sieve analysis, the cinderella of particle size analysis methods, Powder Technology, 24, 115–124.

[24] Allen, T. (2003). Powder Sampling and Particle Size Determination, Elsevier Science Ltd., pp. 208–250.

[25] Rhodes, M. J. (2008). Introduction to particle technology, John Wiley & Sons Ltd., pp. 12–13.

[26] Allen, T., (1992). Particle Size Measurement, Chapman & Hall. 4th Ed.

[27] Igathinathane, C., Ulusoy, U., & Pordesimo, L.O., (2012). Comparison of particle size distribution of celestite mineral by machine vision Volume approach and mechanical sieving, Powder Technology, 215-216C, 137-146.

[28] Lambourne, R., (1993). Paint and Surface coatings–theory and practice; (Ed.), Ellis Horwood Ltd., ISBN 0-13- 030974-5PGk

[29] Levoguer, C., (2013). Using laser diffraction to measure particle size and distribution, May/June MPR, pp. 11- 18, metal-powder.net

[30] Ma, Z., H. G. Merkus, J. G. A. E de Smet, C. Heffels, & Scarlett, B., (2000). New developments in particle characterization by laser diffraction: size and shape, Powder Technology, 111: 66-78.

[31] Kippax, P., (2005). Measuring particle size using modern laser diffraction techniques, Paint&Coatings Industry, August.

[32] Austin, L. G., (1998). Conversion Factors to convert particle size distributions measured by one method to those measured by another method, Part. Part. Syst. Charact. 15: 108-111.

[33] Austin, L. G., and I. Shah. 1983. Powder Technol., 35: 271-278.

[34] Ulusoy U., & Yekeler, M., (2004). Variation of critical surface tension for wetting of minerals with roughness determined by Surtronic 3+ instrument, Int. J. of Miner. Process., 74, (1-4): 61-69.

[35] Ulusoy, U., Yekeler, M. & Hicyilmaz, C., (2003). Determination of the shape, morphological and wettability properties of Quartz and their correlations, Minerals Engineering, 16, (10): 951-964.

[36] Stokes, G. G., (1891). Mathematical and Physical Paper III, Cambridge University Press,

[37] Sympatec Company, Clausthal-Zellerfeld, Germany. http://www.sympatec.com/LaserDiffraction/LaserDiffraction.html

[38] Austin, L. G., Tras, O., Dumm, T. F., & Koka, V. R., (1998). Part. Part. Syst. Charact. 5, 13-15.

[39] Kaya, E. Hogg, R. Kumar, S. R., (2002). Particle shape modification in comminution, KONA, 20, pp. 188-195.

[40] Austin, L. G., Yekeler, M., Dumm, T. F., & Hogg, R., (1990). The kinetics and shape factors of ultrafine dry grinding in a laboratory tumbling ball mill, Part. Syst. Charact., 7, 4, pp. 242-247.

[41] Bond, F. C., (1954). Control particle shape and size, Chem. Eng., pp. 1028-1032.

[42] Heywood, H., (1961). Powders in Industry, Soc. Chem. Ind., pp. 25-26.

[43] Durney, T. E., & Meloy, T. P., (1986). Particle shape effects due to crushing method and size, Int. J Miner. Proc., 16, 109-123.

[44] Lefond, S. J, (1983). Industrial Minerals and Rocks, 5th ed., vol. 2, SME, Littleton,