Isaac Scientific Publishing

Ecology and Sustainable Development

A Retrospective Environmental Assessment of the Natural Heritage of Dal Lake for Prospective Implication Scenarios

Download PDF (5124.5 KB) PP. 1 - 24 Pub. Date: February 15, 2019

DOI: 10.22606/esd.2019.21001


  • Umar Nazir Bhat* and Anisa B. Khan
    Department of Ecology and Environmental Sciences, Pondicherry University, Puducherry, India- 605014.


Monitoring at 30 sampling sites of Dal Lake is carried out to assess its spatial-temporal heterogeneity under human pressures. P surpass critical eutrophic index (≤ 0.05 mgL-1) while nitrate-N persist beneath it (≤ 0.5 mgL-1). Semi-drainage hydrology recuperates basin volume. Autotrophic assimilation and biocalcification episodes drop conductivity. Anionic prevalence of HCO3- and Cl- exist along Ca > Mg > Na > K cationic progression. Autochthonous sediment OM at typical < 10 C/N is the conventional nutrient source. Higher temperature and lower N:P ratio during summer develop P internal loading process. Cr, Ni and Zn exceed the sediment quality guidelines. OM enriched sediments and calcite co-precipitation curtails PTE mobility. Biomass parameters establish similar variations except species turn-over. OM immobilizes nutrients and OC provisions denitrification. Dal Lake exposed to anthro-urban intensification depends on comprehensive management interventions like National Plan for Conservation of Aquatic Ecosystems vital for insitu leniency control and lake-front improvement.


Bioconcentration, compartmentalization, eutrophication, macrophytes, remediation, sewage.


[1] Kalff, J. (2002). Limnology: inland water ecosystems (Vol. 592). New Jersey: Prentice Hall.

[2] Wetzel, R. G. (2001). Land–water interfaces: larger plants. Limnology, 3rd Edn., Academic Press, San Diego.

[3] MEA, Millennium Ecosystem Assessment (2005). Ecosystems and Human Well-Being: Current State and Trends. Island Press, Washington, DC.

[4] National Wetland Atlas: Jammu and Kashmir. (2010). SAC/RESA/AFEG/NWIA/ATLAS/16/2010, Space Applications Centre, ISRO, Ahmedabad, India, 176.

[5] Pandit, A. K. (2002). Topical evolution of lakes in Kashmir Himalaya. Natural resources of western Himalaya. Valley Book House, Srinagar J&K, 213-242.

[6] Romshoo, S. A., & Rashid, I. (2012). Assessing the impacts of changing land cover and climate on Hokersar wetland in Indian Himalayas. Arabian Journal of Geosciences, 7(1), 143-160.

[7] Badar, B., Romshoo, S. A., & Khan, M. A. (2012). Integrating biophysical and socioeconomic information for prioritizing watersheds in a Kashmir Himalayan lake: a remote sensing and GIS approach. Environmental monitoring and assessment, 185(8), 6419-6445.

[8] Andersen, J. H., Axe, P., Backer, H., Carstensen, J., Claussen, U., Fleming-Lehtinen, V., & Kubiliute, A. (2010). Getting the measure of eutrophication in the Baltic Sea: towards improved assessment principles and methods. Biogeochemistry, 106(2), 137-156.

[9] USEPA. (2014). The Assessment and TMDL Tracking and Implementation System. National Summary of State Information.

[10] WHO. (2006). Guidelines for drinking water Quality Vol. 1 Recommendations. 3rd ed. Geneva: World Health Organisation.

[11] Hering, D., Borja, A., Carstensen, J., Carvalho, L., Elliott, M., Feld, C. K., & Solheim, A. L. (2010). The European Water Framework Directive at the age of 10: a critical review of the achievements with recommendations for the future. Science of the total Environment, 408(19), 4007-4019.

[12] Rashid, I., Romshoo, S. A., Amin, M., Khanday, S. A., & Chauhan, P. (2016). Linking human-biophysical interactions with the trophic status of Dal Lake, Kashmir Himalaya, India. Limnologica-Ecology and Management of Inland Waters, 62, 84-96.

[13] Sabah ul Solim, & Wanganeo, A. (2008). Excessive phosphorus loading to Dal Lake, India: Implications for managing shallow eutrophic lakes in urbanized watersheds. International Review of Hydrobiology, 93(2), 148-166.

[14] Fazal, S., & Amin, A. (2011). Impact of urban land transformation on water bodies in Srinagar City, India. Journal of environmental protection, 2(02), 142- 153.

[15] Badar, B., Romshoo, S. A., & Khan, M. A. (2013). Modelling catchment hydrological responses in a Himalayan Lake as a function of changing land use and land cover. Journal of earth system science, 122(2), 433-449.

[16] Jan, D., Pandit, A. K., & Kamili, A.N. (2013). Efficiency evaluation of three fluidised aerobic bioreactor based sewage treatment plants in Kashmir Valley. African Journal of Biotechnology, 12(17), 2224- 2233.

[17] APHA,. (2005). APHA, AWWA, & WEF. Standard methods for the examination of water and wastewater, 21st edn., Washington, DC.

[18] Morford, J.L., Emerson, S.R., Breckel, E.J., & Kim, S.H. (2005). Diagenesis of oxyanions (V, U, Re, and Mo) in porewaters and sediments from a continental margin. Geochimica et cosmochimica Acta. 69, 5021 -5032.

[19] Mazej, Z., & Germ, M. (2009). Trace element accumulation and distribution in four aquatic macrophytes. Chemosphere, 74(5), 642-647.

[20] Parker, J. L., & Bloom, N. S. (2005). Preservation and storage techniques for low-level aqueous mercury speciation. Science of the Total Environment, 337(1), 253-263.

[21] U. S. Environmental Protection Agency. (1994). Method 200.7 : Determination of Metals and Trace Elements in Water and Wastes By Inductively Coupled Plasma – Atomic Emission Spectrometry, Revision 4.4, EMMC.

[22] Matusiewicz, H. (2003). Wet digestion methods (Vol. 41). Elsevier: Amsterdam, Netherlands, 193-233.

[23] Ryan, J., Estefan, G., & Rashid, A. (2001). Soil and Plant Analysis Laboratory Manual. International Center for Agricultural Research in the Dry Areas (ICARDA). Aleppo, Syria.

[24] Gupta, P.K. (2004). Soil, Plant, Water and Fertilizer Analysis. Agro Botanica, Vyas Nagar, Bikaner, India.

[25] Radojevic, M., & Bashkin, V.N. (2006). Practical Environmental Analysis (2nd Ed).The Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge CB4 0 WF, UK.

[26] Estefan, G., Sommer, R., & Ryan, J. (2013). Methods of Soil, Plant and Water Analysis. International Center for Agricultural Research in the Dry Areas (ICARDA), Beirut, Lebanon.

[27] Cook, C. D. (1996). Aquatic and Wetland Plants of India: A reference book and identification manual for the vascular plants found in permanent or seasonal fresh water in the subcontinent of India south of the Himalayas (Vol. 198548214). Oxford: Oxford University Press, 1-385.

[28] Ghosh, S. K. (2005). Illustrated aquatic and wetland plants in harmony with mankind. Standard Literature, 1- 225.

[29] Arshid, S., Wani, A. A., Ganie, A. H., & Khuroo, A. A. (2011). On correct identification, range expansion and management implications of Myriophyllum aquaticum in Kashmir Himalaya, India. Check List, 7(3), 299-302.

[30] Saison, C., Schwartz, C., & Morel, J. L. (2004). Hyperaccumulation of metals by Thlaspi caerulescens as affected by root development and Cd–Zn/Ca–Mg interactions. International Journal of phytoremediation, 6(1), 49-61.

[31] Han, Y.M., Du, P.X., Cao, J.J., Posmentier, E.S. (2006). Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. Science of the Total Environment, 355, 176–186.

[32] Macias, C.G., Schifter, I., Lluch-Cota, D. B., Mendez-Rodriguez, L., & Hernandez-Vazquez, S. (2006). Distribution, enrichment and accumulation of heavy metals in coastal sediments of Salina Cruz Bay, Mexico. Environmental Monitoring and Assessment, 118(1), 211-230.

[33] Wei, B., & Yang, L. (2010). A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchemical Journal, 94(2), 99-107.

[34] Zhang, C., Qiao, Q., Piper, J. D., & Huang, B. (2011). Assessment of heavy metal pollution from a Fe-smelting plant in urban river sediments using environmental magnetic and geochemical methods. Environmental Pollution, 159(10), 3057-3070.

[35] Raj, S. M., & Jayaprakash, M. (2007). Distribution and enrichment of trace metals in marine sediments of Bay of Bengal, off Ennore, south-east coast of India. Environmental Geology, 56(1), 207-217.

[36] MacDonald, D. D., Ingersoll, C. G., & Berger, T. A. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of environmental contamination and toxicology, 39(1), 20-31.

[37] Maanan, M., Saddik, M., Maanan, M., Chaibi, M., Assobhei, O., & Zourarah, B. (2015). Environmental and ecological risk assessment of heavy metals in sediments of Nador lagoon, Morocco. Ecological Indicators, 48, 616-626.

[38] ANZECC/ARMCANZ. (2000). Australian and New Zealand guidelines for fresh and marine water quality. Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, Canberra, 1-103.

[39] Batley, G. E. (2000). Implications of the new ANZECC/ARMCANZ water quality guidelines for mining companies, In. Grundon, NJ and Bell, LC. In Proceedings of the Fourth Australian Workshop on Acid Mine Drainage, 221-229.

[40] Wright, J. F., Sutcliffe, D. W., & Furse, M. T. (2000). Assessing the biological quality of fresh waters: RIVPACS and other techniques. In Assessing the biological quality of fresh waters: RIVPACS and other techniques. Freshwater Biological Association.

[41] Bunn, S. E., & Davies, P. M. (2000). Biological processes in running waters and their implications for the assessment of ecological integrity. In Assessing the Ecological Integrity of Running Waters (pp. 61-70). Springer Netherlands.

[42] Gupta, A., Ronghang, M., Kumar, P., Mehrotra, I., Kumar, S., Grischek, T., & Knoeller, K. (2015). Nitrate contamination of riverbank filtrate at Srinagar, Uttarakhand, India: A case of geogenic mineralization. Journal of Hydrology, 531, 626-637.

[43] de Jonge, V. N., Elliott, M., & Orive, E. (2002). Causes, historical development, effects and future challenges of a common environmental problem: eutrophication. Hydrobiologia, 475(1), 1-19.

[44] Bu, H., Meng, W., Zhang, Y., & Wan, J. (2014). Relationships between land use patterns and water quality in the Taizi River basin, China. Ecological Indicators, 41, 187-197.

[45] Boyd, C. E., Tucker, C. S., & Somridhivej, B. (2016). Alkalinity and hardness: critical but elusive concepts in aquaculture. Journal of the World Aquaculture Society, 47(1), 6-41.

[46] Wiik, E., Bennion, H., Sayer, C. D., Davidson, T. A., McGowan, S., Patmore, I. R., & Clarke, S. J. (2015). Ecological sensitivity of marl lakes to nutrient enrichment: evidence from Hawes Water, UK. Freshwater Biology, 60(11), 2226-2247.

[47] Njenga, J. W. (2004). Comparative studies of water chemistry of four tropical lakes in Kenya and India. Asian journal of water, environment and pollution, 1(1, 2), 87-97.

[48] Singh, S. P., & Singh, B. P. (2010). Geothermal evolution of the evaporite-bearing sequences of the Lesser Himalaya, India. International Journal of Earth Sciences, 99(1), 101-108.

[49] Jeelani, G., & Shah, A. Q. (2006). Geochemical characteristics of water and sediment from the Dal Lake, Kashmir Himalaya: constraints on weathering and anthropogenic activity. Environmental Geology, 50(1), 12-23.

[50] Berzas Nevado, J. J., Rodríguez Martín-Doimeadios, R. C., Guzmán Bernardo, F. J., Jiménez Moreno, M., Ortega Tardío, S., Sánchez-Herrera Fornieles, M. M., & Doncel Pérez, A. (2009). Integrated pollution evaluation of the Tagus River in Central Spain. Environmental monitoring and assessment, 156(1), 461-477.

[51] Yu, Y., Song, J., Li, X., & Duan, L. (2012). Geochemical records of decadal variations in terrestrial input and recent anthropogenic eutrophication in the Changjiang Estuary and its adjacent waters. Applied Geochemistry, 27(8), 1556-1566.

[52] Feichtinger, F., Smidt, S., & Klaghofer, E. (2002). Water and nitrate fluxes at a forest site in the North Tyrolean Limestone Alps. Environmental Science and Pollution Research, 9(2), 31.

[53] Hayakawa, A., Ikeda, S., Tsushima, R., Ishikawa, Y., & Hidaka, S. (2015). Spatial and temporal variations in nutrients in water and riverbed sediments at the mouths of rivers that enter Lake Hachiro, a shallow eutrophic lake in Japan. Catena, 133, 486-494.

[54] Srebotnjak, T., Carr, G., de Sherbinin, A., & Rickwood, C. (2012). A global Water Quality Index and hot-deck imputation of missing data. Ecological Indicators, 17, 108-119.

[55] Michard, G., Sarazin, G., Jézéquel, D., Albéric, P., & Ogier, S. (2001). Annual budget of chemical elements in a eutrophic lake, Aydat lake (Puy-de-Dôme), France. Hydrobiologia, 459(1), 27-46.

[56] Müller, B., Meyer, J. S., & Gächter, R. (2016). Alkalinity regulation in calcium carbonate‐buffered lakes. Limnology and Oceanography, 61(1), 341-352.

[57] Olsen, S., Jeppesen, E., Moss, B., Özkan, K., Beklioglu, M., Feuchtmayr, H., & Sondergaard, M. (2014). Factors influencing nitrogen processing in lakes: an experimental approach. Freshwater Biology, 60(4), 646-662.

[58] Nnaji, C. C., & Agunwamba, J. C. (2014). Quality assessment of water receiving effluents from crude oil flow stations in Niger Delta, Nigeria. Water and Environment Journal, 28(1), 104-113.

[59] Xu, Y., Xie, R., Wang, Y., & Sha, J. (2014). Spatio-temporal variations of water quality in Yuqiao Reservoir Basin, North China. Frontiers of Environmental Science & Engineering, 9(4), 649-664.

[60] Belkhiri, L., & Narany, T. S. (2015). Using multivariate statistical analysis, geostatistical techniques and structural equation modeling to identify spatial variability of groundwater quality. Water Resources Management, 29(6), 2073-2089.

[61] Ouma, H., & Mwamburi, J. (2014). Spatial variations in nutrients and other physicochemical variables in the topographically closed Lake Baringo freshwater basin (Kenya). Lakes & Reservoirs: Research & Management, 19(1), 11-23.

[62] Chon, H. S., Ohandja, D. G., & Voulvoulis, N. (2012). The role of sediments as a source of metals in river catchments. Chemosphere, 88(10), 1250-1256.

[63] Moiseenko, T. I., Gashkina, N. A., & Dinu, M. I. (2016). Enrichment of Surface Water by Elements: Effects of Air Pollution, Acidification and Eutrophication. Environmental Processes, 3(1), 39-58.

[64] FAO, Food and agriculture organization. (2010). The wealth of waste: the economics of wastewater use in agriculture. Water Reports, (35).

[65] Tchobanoglous, G., Burton F. L., & Stensel H. D. (2003). Wastewater engineering: treatment and reuse. Metcalf & Eddy Inc., New York, NY: McGraw Hill.

[66] Markich, S. J., Brown, P. L., Batley, G. E., Apte, S. C., & Stauber, J. L. (2001). Incorporating metal speciation and bioavailability into water quality guidelines for protecting aquatic ecosystems. Australasian Journal of Ecotoxicology, 7(2), 109-122.

[67] Li, D., Huang, D., Guo, C., & Guo, X. (2015). Multivariate statistical analysis of temporal–spatial variations in water quality of a constructed wetland purification system in a typical park in Beijing, China. Environmental monitoring and assessment, 187(1), 4219. DOI 10.1007/s10661-014-4219-2

[68] Najar, I. A., & Khan, A. B. (2012). Assessment of water quality and identification of pollution sources of three lakes in Kashmir, India, using multivariate analysis. Environmental Earth Sciences, 66(8), 2367-2378.

[69] Downing, J. A., Cole, J. J., Middelburg, J. J., Striegl, R. G., Duarte, C. M., Kortelainen, P., & Laube, K. A. (2008). Sediment organic carbon burial in agriculturally eutrophic impoundments over the last century. Global Biogeochemical Cycles, 22(1), 1- 10.

[70] Wagner, B., Lotter, A. F., Nowaczyk, N., Reed, J. M., Schwalb, A., Sulpizio, R., & Zanchetta, G. (2009). A 40,000-year record of environmental change from ancient Lake Ohrid (Albania and Macedonia). Journal of Paleolimnology, 41(3), 407-430.

[71] Knoll, L. B., Vanni, M. J., Renwick, W. H., & Kollie, S. (2014). Burial rates and stoichiometry of sedimentary carbon, nitrogen and phosphorus in Midwestern US reservoirs. Freshwater biology, 59(11), 2342-2353.

[72] Schaller, J., Vymazal, J., & Brackhage, C. (2013). Retention of resources (metals, metalloids and rare earth elements) by autochthonously/allochthonously dominated wetlands: a review. Ecological Engineering, 53, 106-114.

[73] Ammar, R., Kazpard, V., Wazne, M., El Samrani, A. G., Amacha, N., Saad, Z., & Chou, L. (2015). Reservoir sediments: a sink or source of chemicals at the surface water-groundwater interface. Environmental monitoring and assessment, 187(9), 579.

[74] Urban, N. R., Brezonik, P. L., Baker, L. A., & Sherman, L. A. (2009). Sulfate reduction and diffusion in sediments of Little Rock Lake, Wisconsin. Limnology and Oceanography, 39(4), 797-815.

[75] Gudasz, C., Bastviken, D., Steger, K., Premke, K., Sobek, S., & Tranvik, L. J. (2010). Temperature-controlled organic carbon mineralization in lake sediments. Nature, 466(7305), 478-481.

[76] de Vicente, I., Guerrero, F., & Cruz-Pizarro, L. (2010). Chemical composition of wetland sediments as an integrator of trophic state. Aquatic Ecosystem Health & Management, 13(1), 99-103.

[77] Heathcote, A. J., & Downing, J. A. (2012). Impacts of eutrophication on carbon burial in freshwater lakes in an intensively agricultural landscape. Ecosystems, 15(1), 60-70.

[78] Tranvik, L. J., Downing, J. A., Cotner, J. B., Loiselle, S. A., Striegl, R. G., Ballatore, T. J., & Kortelainen, P. L. (2009). Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and Oceanography, 54(6part2), 2298-2314.

[79] Min, K., Kang, H., & Lee, D. (2011). Effects of ammonium and nitrate additions on carbon mineralization in wetland soils. Soil Biology and Biochemistry, 43(12), 2461-2469.

[80] Garland, J. L., Mackowiak, C. L., & Zabaloy, M. C. (2010). Organic waste amendment effects on soil microbial activity in a corn–rye rotation: Application of a new approach to community-level physiological profiling. Applied Soil Ecology, 44(3), 262-269.

[81] Allison, S. D., Czimczik, C. I., & Treseder, K. K. (2008). Microbial activity and soil respiration under nitrogen addition in Alaskan boreal forest. Global Change Biology, 14(5), 1156-1168.

[82] Elser, J. J., Andersen, T., Baron, J. S., Bergström, A. K., Jansson, M., Kyle, M., & Hessen, D. O. (2009). Shifts in lake N: P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition. science, 326(5954), 835-837.

[83] Abell, J. M., Özkundakci, D., & Hamilton, D. P. (2010). Nitrogen and phosphorus limitation of phytoplankton growth in New Zealand lakes: implications for eutrophication control. Ecosystems, 13(7), 966-977.

[84] Canavan, R. W., Slomp, C. P., Jourabchi, P., Van Cappellen, P., Laverman, A. M., & Van den Berg, G. A. (2006). Organic matter mineralization in sediment of a coastal freshwater lake and response to salinization. Geochimica et Cosmochimica Acta, 70(11), 2836-2855.

[85] Smolders, A. J. P., Lamers, L. P. M., Lucassen, E. C. H. E. T., Van der Velde, G., & Roelofs, J. G. M. (2006). Internal eutrophication: how it works and what to do about it—a review. Chemistry and ecology, 22(2), 93-111.

[86] Jing, L.D., xi Wu, C., tong Liu, J., guang Wang, H., & yi Ao, H. (2013). The effects of dredging on nitrogen balance in sediment-water microcosms and implications to dredging projects. Ecological Engineering, 52, 167-174.

[87] Jing, L., Liu, X., Bai, S., Wu, C., Ao, H., & Liu, J. (2015). Effects of sediment dredging on internal phosphorus: A comparative field study focused on iron and phosphorus forms in sediments. Ecological Engineering, 82, 267-271.

[88] Turner, A., Millward, G. E., & Le Roux, S. M. (2004). Significance of oxides and particulate organic matter in controlling trace metal partitioning in a contaminated estuary. Marine Chemistry, 88(3), 179-192.

[89] Selig, U., & Schlungbaum, G. (2003). Characterisation and quantification of phosphorus release from profundal bottom sediments in two dimictic lakes during summer stratification. Journal of Limnology. 62(2), 151-162.

[90] Lopes, M. L., Rodrigues, A. M., & Quintino, V. (2014). Ecological effects of contaminated sediments following a decade of no industrial effluents emissions: The Sediment Quality Triad approach. Marine pollution bulletin, 87(1), 117-130.

[91] Wali, A., Kawachi, A., Bougi, M. S. M., Dhia, H. B., Isoda, H., Tsujimura, M., & Ksibi, M. (2015). Effects of metal pollution on sediments in a highly saline aquatic ecosystem: case of the Moknine Continental Sebkha (Eastern Tunisia). Bulletin of environmental contamination and toxicology, 94(4), 511-518.

[92] Chandrasekaran, A., Ravisankar, R., Harikrishnan, N., Satapathy, K. K., Prasad, M. V. R., & Kanagasabapathy, K. V. (2015). Multivariate statistical analysis of heavy metal concentration in soils of Yelagiri Hills, Tamilnadu, India–Spectroscopical approach. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 137, 589-600.

[93] Bastami, K. D., Neyestani, M. R., Shemirani, F., Soltani, F., Haghparast, S., & Akbari, A. (2015). Heavy metal pollution assessment in relation to sediment properties in the coastal sediments of the southern Caspian Sea. Marine pollution bulletin, 92(1), 237-243.

[94] Iqbal, J., Tirmizi, S. A., & Shah, M. H. (2013). Statistical apportionment and risk assessment of selected metals in sediments from Rawal Lake (Pakistan). Environmental monitoring and assessment, 185(1), 729-743.

[95] Ji, Y., Zhang, J., Li, R., Pan, B., Zhang, L., & Chen, X. (2015). Distribution and partitioning of heavy metals in sediments of the Xinjiang River in Poyang Lake Region, China. Environmental Progress & Sustainable Energy, 34(3), 713-723.

[96] Sany, S. B. T., Hashim, R., Rezayi, M., Salleh, A., & Safari, O. (2014). A review of strategies to monitor water and sediment quality for a sustainability assessment of marine environment. Environmental Science and Pollution Research, 21(2), 813-833.

[97] Yuan, Z., Taoran, S., Yan, Z., & Tao, Y. (2014). Spatial distribution and risk assessment of heavy metals in sediments from a hypertrophic plateau lake Dianchi, China. Environmental monitoring and assessment, 186(2), 1219-1234.

[98] Paramasivam, K., Ramasamy, V., & Suresh, G. (2015). Impact of sediment characteristics on the heavy metal concentration and their ecological risk level of surface sediments of Vaigai river, Tamilnadu, India. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 137, 397-407.

[99] Kissoon, L. T., Jacob, D. L., Hanson, M. A., Herwig, B. R., Bowe, S. E., & Otte, M. L. (2013). Macrophytes in shallow lakes: Relationships with water, sediment and watershed characteristics. Aquatic Botany, 109, 39-48.

[100] Gottschall, N., Boutin, C., Crolla, A., Kinsley, C., & Champagne, P. (2007). The role of plants in the removal of nutrients at a constructed wetland treating agricultural (dairy) wastewater, Ontario, Canada. Ecological Engineering, 29(2), 154-163.

[101] Ismail, Z., Othman, S. Z., Law, K. H., Sulaiman, A. H., & Hashim, R. (2014). Comparative Performance of Water Hyacinth ( Eichhornia crassipes) and Water Lettuce (Pista stratiotes) in Preventing Nutrients Build-up in Municipal Wastewater. CLEAN - Soil, Air, Water, 43(4), 521-531.

[102] El-Otify, A. M. (2015). Evaluation of the physicochemical and chlorophyll-a conditions of a subtropical aquaculture in Lake Nasser area, Egypt. Beni-Suef University Journal of Basic and Applied Sciences, 4(4), 327-337.

[103] Hasler, C. T., Butman, D., Jeffrey, J. D., & Suski, C. D. (2016). Freshwater biota and rising pCO2? Ecology Letters, 19(1), 98-108.

[104] McElarney, Y., Rasmussen, P., Foy, R., & Anderson, N. (2010). Response of aquatic macrophytes in Northern Irish softwater lakes to forestry management; eutrophication and dissolved organic carbon. Aquatic Botany, 93(4), 227-236.

[105] Shaltout, K. H., Galal, T. M., & El-Komi, T. M. (2014). Biomass, nutrients and nutritive value of Persicaria salicifolia Willd. in the water courses of Nile Delta, Egypt. Rendiconti Lincei, 25(2), 167-179.

[106] Chen, X., Yang, X., Dong, X., & Liu, E. (2013). Environmental changes in Chaohu Lake (southeast, China) since the mid 20th century: The interactive impacts of nutrients, hydrology and climate. Limnologica - Ecology and Management of Inland Waters, 43(1), 10-17.

[107] Udeigwe, T. K., Teboh, J. M., Eze, P. N., Hashem Stietiya, M., Kumar, V., Hendrix, J., Kandakji, T. (2015). Implications of leading crop production practices on environmental quality and human health. Journal of Environmental Management, 151, 267-279.

[108] Liu, J. L., Liu, J. K., Anderson, J. T., Zhang, R., & Zhang, Z. M. (2014). Potential of aquatic macrophytes and artificial floating island for removing contaminants. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 150(4), 702-709.

[109] Sarwar, N., Saifullah, Malhi, S. S., Zia, M. H., Naeem, A., Bibi, S., & Farid, G. (2010). Role of mineral nutrition in minimizing cadmium accumulation by plants. Journal of the Science of Food and Agriculture, 90, 925-937.

[110] Cotner, J. B., Kenning, J., & Scott, J. T. (2009). The microbial role in littoral zone biogeochemical processes: why Wetzel was right. Verh Int Ver Limnol, 30, 981-984.

[111] Quilliam, R. S., Van Niekerk, M. A., Chadwick, D. R., Cross, P., Hanley, N., Jones, D. L., Oliver, D. M. (2015). Can macrophyte harvesting from eutrophic water close the loop on nutrient loss from agricultural land? Journal of Environmental Management, 152, 210-217.

[112] Wang, C. Y., Sample, D. J., Day, S. D., & Grizzard, T. J. (2015). Floating treatment wetland nutrient removal through vegetation harvest and observations from a field study. Ecological Engineering, 78, 15-26.

[113] Zheng, Y., Wang, X. C., Ge, Y., Dzakpasu, M., Zhao, Y., & Xiong, J. (2015). Effects of annual harvesting on plants growth and nutrients removal in surface-flow constructed wetlands in northwestern China. Ecological Engineering, 83, 268-275.

[114] Sistla, S. A., Appling, A. P., Lewandowska, A. M., Taylor, B. N., & Wolf, A. A. (2015). Stoichiometric flexibility in response to fertilization along gradients of environmental and organismal nutrient richness. Oikos, 124(7), 949-959.

[115] Harguinteguy, C. A., Cirelli, A. F., & Pignata, M. L. (2014). Heavy metal accumulation in leaves of aquatic plant Stuckenia filiformis and its relationship with sediment and water in the Suquía river (Argentina). Microchemical Journal, 114, 111-118.

[116] Amari, T., Ghnaya, T., Debez, A., Taamali, M., Youssef, N. B., Lucchini, G., & Abdelly, C. (2014). Comparative Ni tolerance and accumulation potentials between Mesembryanthemum crystallinum (halophyte) and Brassica juncea: metal accumulation, nutrient status and photosynthetic activity. Journal of plant physiology, 171(17), 1634-1644.

[117] Novak, P. A., & Chambers, J. M. (2014). Investigation of nutrient thresholds to guide restoration and management of two impounded rivers in south-western Australia. Ecological Engineering, 68, 116-123.