Isaac Scientific Publishing

Advances in Astrophysics

Polonnaruwa Stones Revisited – Evidence for Non-Terrestrial Life

Download PDF (597 KB) PP. 19 - 25 Pub. Date: May 30, 2021

DOI: 10.22606/adap.2021.62001

Author(s)

  • Milton Wainwright
    Centre for Astrobiology, University of Ruhuna, Matara, Sri Lanka; Institute for the Study of Panspermia and Astrobiology, Gifu, Japan
  • N. Chandra Wickramasinghe
    Buckingham Centre for Astrobiology, University of Buckingham, UK; Centre for Astrobiology, University of Ruhuna, Matara, Sri Lanka; National Institute of Fundamental Studies, Kandy, Sri Lanka; Institute for the Study of Panspermia and Astrobiology, Gifu, Japan

Abstract

Recent discoveries of highly porous low-density carbonaceous asteroids such as 101955 Bennu and Ryugu have motivated a re-examination of the Polonnaruwa stones which fell in central Sri Lanka on 27 December 2012 following a fireball sighting. Previous discoveries of biological entities including fossilized extinct microorganisms (acritarchs) have tended to be discounted as contaminants for the reason that the stones did not fit into a known meteorite category. In view of the new data from space exploration we re-examine samples of the Polonnaruwa stones and confirm earlier evidence for the existence of diatom frustules and other complex biology.

Keywords

panspermia, astrobiology, comets, stratospheric microbiota

References

[1] Anders, E. and Fitch, F., (1962). Search for organized elements in carbonaceous chondrites. Science 138, 1392

[2] Bens, E.M. and Drew, C.H. (1967). Diatomaceous Earth: scanning electron microscope of Chromosorb. Nature 216, 1046-1048.

[3] Chan, Q.H.S., Stephant, A., Franchi, I.A. et al (2020). Organic matter and water from the asteroid Itokawa Geochimica et Cosmochimica Acta 71, 4380-4403 (DOI: 10.21203/rs.3.rs-109379/v1)

[4] Chandrajith, R. Senaratne,A. and Guntilake,P.G.L. (2004). Aralaganwila stony material: fused soil or extrater-restrial? Proceedings of the Peradenyia University International Research Session, Sri Lanka. 18, 1537.

[5] Claus, G. and Nagy, B., (1961). A microbiological examination of some carbonaceous chondrites. Nature 192, 594

[6] Fitch, F.W., Schwarz, H.P. and Anders, E., (1962). Organized elements in carbonaceous chondrites. Nature, 193, 1123

[7] Grott, M., Knollenberg, J., Hamm, M. et al (2019). Low thermal conductivity boulder with high porosity identified on C-type asteroid (162173) Ryugu. Nature Astronomy, 3(11):1-6. DOI: 10.1038/s41550-019-0832-x

[8] Hoover, R.B., (2005). In R.B. Hoover, A.Y. Rozanov and R.R. Paepe (eds.) Perspectives in Astrobiology, (IOS Press Amsterdam)

[9] Hoover, R.B., (2011). Fossils of Cyanobacteria in C11 carbonaceous meteorites: implications to life on comets, Europa and Enceladus. Journal of Cosmology 13: (http://www.panspermia.org/hoovermeteorites.pdf)

[10] Hoover R.B., Hoover M.J., Hoyle F., Wickramasinghe N.C. and Al-Mufti S. (1986) Diatoms on Earth, Comets, Europa and in interstellar space. Earth, Moon, and Planets 35, 19-45.

[11] Hoover, R. B., Frontasyeva, M. and Pavlov, S. (2020). Epithermal neutron analysis of carbonaceous chondrites and the Polonnaruwa/Araganwila stones. Aspects in Mining and Mineral Science 6, 669-679. doi: 10.31031/AMMS.2020.06.000626

[12] Hoover, R. B., Wallis, J.,Wickramarathne, K., Samaranayake, A., Williams, G., Jerman, G., Wallis, D. H., and Wickramasinghe, N. C. (2013) Fossilized diatoms in meteorites from recent falls in Sri Lanka. Proc. SPIE 8965: 8865_06: 1-14. doi:10.1117/12.2028605.

[13] Joseph A. Nuth, N.A., Abreu, N., Ferguson, F.T., et al (2020). Volatile-rich Asteroids in the Inner Solar System

[14] The Planetary Science Journal, 1:82

[15] Pflug, H.D., (1984). Ultrafine structure of organic matter in meteorites”, in Fundamental Studies and the Future of Science, C. Wickramasinghe (ed.), Cardiff, University College Cardiff Press.

[16] Simon, A.A., Kaplan, H.H., Hamilton, V.E. et al. (2020). Widespread carbon-bearing materials on near-Earth asteroid (101955) Bennu. Science 06 Nov 2020, Vol. 370, Issue 6517, eabc3522

[17] Turner, S., McGee, L., Humayun, M. et al. (2021). Carbonaceous chondrite meteorites experienced fluid flow within the past million years. Science 371, 164–167

[18] Urey, H.C. (1962). Origin of life-like forms in carbonaceous chondrites. Nature 193 1962 1119-23.

[19] Wainwright, M. (2015). Biological entities and DNA containing masses isolated from the stratosphere-evidence for a non-terrestrial origin. Astronomical Review 11, 25-50.

[20] Wallis, J., Wickramasinghe, N.C., Wallis, D.H. et al., (2013). Physical, chemical and mineral properties of the Polonnaruwa stones, in Proceedings of SPIE 8865, 886508-1

[21] Wickramasinghe, J.T., Wickramasinghe, N.C. and Napier, W.M. (2010). Comets and the Origin of Life, World Scientific Press, Singapore.

[22] Wickramasinghe, N. C., Wallis, J.,Wallis, D.H. and Samaranyake, A. (2013). Fossil diatoms in a new carbona-ceous meteorite Journal of Cosmology, 21, arxiv1302.2398.

[23] Zeren, D. and Guden, M. (2017). Increased compression strength of epoxy resin with the addition of heat-treated natural nano-structured diatom frustules. Journal of Composite Materials 51, 1681-1689.