Isaac Scientific Publishing

Advances in Astrophysics

Quantised Inertia and Galaxy Rotation from Information

Download PDF (330.7 KB) PP. 91 - 94 Pub. Date: November 2, 2020

DOI: 10.22606/adap.2020.54002

Author(s)

  • M. E. McCulloch*
    University of Plymouth, PL4 8AA, UK

Abstract

The theory of quantised inertia (QI) can predict galaxy rotations without dark matter. It is shown here that QI can be derived from Landauer’s principle by assuming that bits of information are stored in the distances between objects and the horizons they see.

Keywords

Quantised inertia, Information, Galaxy rotation

References

[1] 1. Zwicky, F., 1937. On the masses of nebulae and clusters of nebulae. Astrophysical Journal, 86, 217.

[2] 2. Rubin, V.C., W.K. Ford, 1970. The Astrophysical Journal, 159, 379.

[3] 3. Scarpa, R., G. Marconi, R. Gimuzzi and G. Carraro, 2007. A&A, 462, L9.

[4] 4. Hernandez, X., R.A.M. Cortes, C. Allen and R. Scarpa, 2018. Challenging a Newtonian prediction through Gaia wide binaries. IJMP-D, 28, 8, 1950101.

[5] 5. Unzicker, A., 2008. Why do we still believe in Newton’s law? Facts, myths and methods in gravitational physics. arXiv: gr-qc/0702009.

[6] 6. Shawyer, R, 2008. Microwave propulsion - progress in the emdrive programme. 59th International Astronautical Conference. IAC-2008. Glasgow, UK.

[7] 7. White, H., P. March, J. Lawrence, J. Vera, A. Sylvester, D. Brady and P. Bailey, 2016. J. Propulsion and Power. doi:10.2514/1.B36120.

[8] 8. McCulloch, M.E., 2007. Modelling the Pioneer anomaly as modified inertia. Mon. Not. Roy. Astro. Soc., 376, 338-342.

[9] 9. McCulloch, M.E., 2013. Inertia from an asymmetric Casimir effect. EPL, 101, 59001.

[10] 10. McCulloch, M.E., 2012. Testing quantised inertia on galactic scales. Astro. Sp. Sci., 342, 2, 575-578.

[11] 11. McCulloch, M.E. & J. Lucio, 2019. Testing Newton/GR, MoND & quantised inertia on wide binaries. ApSS., 364, 121.

[12] 12. McCulloch, M.E., 2017. Testing quantised inertia on emdrives with dielectrics. EPL, 118, 34003.

[13] 13. Renda, M., 2019. A sceptical analysis of quantised inertia. MNRAS, 489, 1, 881-885.

[14] 14. Landauer, R., 1961. Irreversibility and heat generation in the computing process. IBM J. Research and Development. 5(3), 183-191.

[15] 15. Lee J-W, J.J Lee and H.C. Kim, 2007. Quantum informational dark energy: dark energy from forgetting. Proc. Nat. Inst. for Math. Science, 8, 1.

[16] 16. McCulloch, M.E. and J. Gine, 2017. Modified inertial mass from information loss. MPL-A, 32, 28, 1750148.

[17] 17. McCulloch, M.E. and J. Gine, 2020. Deriving quantised inertia using horizon-widths in the uncertainty principle. ASTP, 14, 1, 1-8.

[18] 18. Kish, L.B., 2007. “Gravitational mass” of information? Fluctuation and Noise Letters, 2007, Vol: 7 Issue: 4, C51 - C68.

[19] 19. Vopson, M.M., 2019. The mass-energy-information equivalence principle. AIP Advances, 9, 095206.

[20] 20. Shannon, C.F., 1948. A mathematical theory of communication. The Bell System Technical Journal. 27, 379-423.

[21] 21. Hong, J., B. Lambson, S. Dhuey and J. Bokor, 2016. Experimental test of Landauer’s principle in single-bit operations on nanomagnetic memory bits. Science Advances, Vol. 2, no. 3, e1501492.

[22] 22. McCulloch, M.E., 2016. Quantised inertia from relativity and the uncertainty principle. EPL, 115, 69001.