Isaac Scientific Publishing

Advances in Astrophysics

Did the Human Genetic Lineage Start with Comet Impacts at the End of the Eocene?

Download PDF (226.5 KB) PP. 87 - 90 Pub. Date: November 2, 2020

DOI: 10.22606/adap.2020.54001


  • N. Chandra Wickramasinghe*
    1 Buckingham Centre for Astrobiology, University of Buckingham, UK; 2 Centre for Astrobiology, University of Ruhuna, Matara, Sri Lanka; 3 National Institute of Fundamental Studies, Kandy, Sri Lanka; 4 Institute for the Study of Panspermia and Astroeconomics, Gifu, Japan
  • Gensuke Tokoro
    1 Centre for Astrobiology, University of Ruhuna, Matara, Sri Lanka; 2 Institute for the Study of Panspermia and Astroeconomics, Gifu, Japan
  • Maximiliano C.L. Rocca
    Mendoza 2779-16A, Ciudad de Buenos Aires, Argentina


The theory of cometary panspermia posits that the evolution of life on Earth including the introductions of novel innovative trends is controlled to a large extent by the incidence of bacteria and viruses from the wider cosmos. In this communication we point out the possibility that the defining characteristics of H. sapiens – intelligence, acuity of vision amongst others - may have been introduced into ancestral Anthropoidea primates 35-40 million years ago (Mya) when the Earth was being showered with cometary debris.


comets, primates, Eocene, human evolution


[1] 1. Bell EA, Boehnke P, Harrison T et al (2015). Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon, PNAS, 112 (47) 14518-14521

[2] 2. Boschi, S., Schmitz, B., Heck, P.R. et al, 2017. Late Eocene 3He and Ir anomalies associated with ordinary chondritic spinels, Geocheim. Et Cosmochim. Acta, 204, 205-218

[3] 3. Farley, K.A., Montanari, A., E.M., Shoemaker,E.M. and Shoemaker, C.S., 1998., Geochemical evidence for a comet shower in the late Eocene, Science, 1250-1253

[4] 4. Gebo, D.L., Dagosto, M., Ni, Xijun et al, 2012. Species Diversity and Postcranial Anatomy of Eocene Primates from Shanghuang, Chin, Evolutionary Anthropology 21:224–238

[5] 5. Gingerich, P.D., 2012. in Messell and the terrestrial Eocene – Proceedings of the 22nd Senckenberg Conference, Palaeobio Palaeoenv, DOI 10.1007/s12549-012-0093-5

[6] 6. Gould, S. J. and Eldredge, N., 1977. Punctuated equilibria: the tempo and mode of evolution reconsidered, Paleobiology 3 (2): 115-151

[7] 7. Hoyle, F. and Wickramasinghe, N.C., 1981. in C. Ponnamperuma (ed) Comets and the Origin of Life, p.227, (Dordrect; D.Riedel)

[8] 8. Jaeger, J., Beard, K., Chaimanee, Y. et al. 2010. Late middle Eocene epoch of Libya yields earliest known radiation of African anthropoids. Nature 467, 1095–1098

[9] 9. Leitch, E.M., and Vasisht, G., 1998. New Astron, 3, 51

[10] 10. Macdonald, D. (ed.) 2001. The New Encyclopedia of Mammals ( Oxford University Press)

[11] 11. Napier, W.M. and Clube, S.V.M., 1979. Nature, 282, 455

[12] 12. Osinski, G. and Pierazzo, E., (editors), 2013: Impact Cratering: Processes and Products. Wiley Press, Chichester, UK, 330 pp.

[13] 13. Rocca, M.C.L. and Acevedo, R.D., 2014. Extrasolar comets in our solar system captured during close encounters with nearby stars? Abstract 5170 presented at the 77th Annual Meeting of the Meteoritical Society.

[14] 14. Stothers, R.B., 1998, Mon.Not.Roy.Astr.Soc., 300, 1098

[15] 15. Stothers, R.B., 2006, Mon.Not.Roy.Astr.Soc., 365, 178

[16] 16. Wickramasinghe, J., Wickramasinghe, C., Napier, W., 2010. Comets and the Origin of Life (World Scientific Publ.)

[17] 17. Wickramasinghe, N.C., Steele, E.J., Wallis, D.H. et al, 2018, Advances in Astrophysics, Vol. 3, No. 1,

[18] 18. Williams, B.A., Kaya, R.F. and Kirkb, E.C., 2010. New perspectives on anthropoid origins, PNAS, 107(11), 4797–4804