联系我们
Isaac Scientific Publishing
Advances in Astrophysics
AdAp > Volume 5, Number 2, May 2020

Functions and Relations for a Relativistic Evolving Star with Spherical Symmetry

Download PDF  (262.1 KB)PP. 37-42,  Pub. Date:March 11, 2020
DOI: 10.22606/adap.2020.52001

Author(s)
Ying-Qiu Gu
Affiliation(s)
School of Mathematical Science, Fudan University, Shanghai 200433, China
Abstract
In this paper, we derive and simplify some important equations and relations for a relativistic evolving star with spherical symmetry, and then give some simple analysis for their properties and implications. In the light-cone coordinate system, these equations and relations have a normal and neat form which is much more accessible than the usual Einstein field equation. The dynamics for the evolving star is reduced to a standard first order hyperbolic partial differential equation system of (ρ, v), which can be analyzed and solved by characteristic method. So they may be helpful to understand the nature of an evolving star and the collapsing process of gravitation.
Keywords
stellar structure, stellar evolution, Einstein’s field equation, relativistic evolving equation, singularity.
References
  • [1]  J. N. Islam, Rotating fields in general relativty (Cambridge: Cambridge Univ. Press), 1985.
  • [2]  D. Kramer, H. Stephani, E. Herlt, M. MacCallum, E. Schmutzer, Exact Solutions of Einstein’s Field Equations, (Cambridge: Cambridge Univ. Press), 1980.
  • [3]  J. Bicak, Einstein equations: exact solutions, in Encyclopedia of Mathematical Physics Vol. 2 165 (Oxford: Elsevier), 2006.
  • [4]  V. S. Manko, J. D. Sanabria-Gómez, O. V. Manko, Nine-parameter electrovac metric involving rational functions, Phys. Rev. D62, 044048(2000).
  • [5]  S. Hawking, G. Ellis, The Large Scale Structure of the Space-time, Cambridge Univ. Press 1999.
  • [6]  Y. Q. Gu, Exact Vacuum Solutions to the Einstein Equation, Chin. Ann. Math. 28B(5), 2007, 499-506, arXiv:0706.0318
  • [7]  M. S. R. Delgaty, K. Lake, Physical Acceptability of Isolated, Static, Spherically Symmetric, Perfect Fluid Solutions of Einstein’s Equations, Comput.Phys.Commun.115:395-415,1998, arXiv:gr-qc/9809013
  • [8]  K. Lake, All static spherically symmetric perfect fluid solutions of Einstein’s Equations, Phys.Rev. D67 (2003) 104015, arXiv:gr-qc/0209104
  • [9]  D. Martin, M. Visser, Algorithmic construction of static perfect fluid spheres, Phys.Rev. D69 (2004) 104028, arXiv:gr-qc/0306109
  • [10]  P. Boonserm, M. Visser, S. Weinfurtner, Generating perfect fluid spheres in general relativity, Phys.Rev. D71 (2005) 124037, arXiv:gr-qc/0503007
  • [11]  S. L. Weinberg, Gravitation and Cosmology, (Ch.5, Ch.11), Wiley, New York, 1972.
  • [12]  Y. Q. Gu. Light-Cone Coordiante System in General Relativity, arXiv:0710.5792
  • [13]  M. Gasperini, G. Marozzi, F. Nugier and G. Veneziano, Light-cone averaging in cosmology: formalism and applications, JCAP 1107 (2011) 008, [arXiv:1104.1167]
  • [14]  F. Scaccabarozzi, J. Yoo, Light-Cone Observables and Gauge-Invariance in the Geodesic Light-Cone Formalism, JCAP 06 (2017) 007, arXiv:1703.08552
  • [15]  P. Fleury, F. Nugier, G. Fanizza, Geodesic-light-cone coordinates and the Bianchi I space-time, JCAP 06 (2016) 008, arXiv:1602.04461.
Copyright © 2020 Isaac Scientific Publishing Co. All rights reserved.