Isaac Scientific Publishing

Advances in Astrophysics

Self-gravitating Envelope Solitons in a Degenerate Quantum Plasma System

Download PDF (1720.7 KB) PP. 257 - 265 Pub. Date: October 18, 2018

DOI: 10.22606/adap.2018.34005

Author(s)

  • N. Ahmed*
    Department of Physics, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
  • N. A. Chowdhury
    Department of Physics, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
  • A. Mannan
    Department of Physics, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
  • A. A. Mamun
    Department of Physics, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh

Abstract

The existence and the basic features of ion-acoustic (IA) envelope solitons in a selfgravitating degenerate quantum plasma system (SG-DQPS), containing inertial non-relativistically degenerate light and heavy ion species as well as inertialess non-relativistically degenerate positron and electron species, have been theoretically investigated by deriving the nonlinear Schrödinger (NLS) equation. The NLS equation, which governs the dynamics of the IA waves, has disclosed the modulationally stable and unstable regions for the IA waves. The unstable region allows to generate bright envelope solitons which are modulationaly stable. It is found that the stability and the growth rate are dependent on the plasma parameters (like, mass and number density of the plasma species). The implications of our results in astronomical compact object (viz. white dwarfs, neutron stars, and black holes, etc.) are briefly discussed.

Keywords

Modulational instability, reductive perturbation method, envelope solitons.

References

[1] S. Chandrasekhar, Astrophys. J. 74 81 (1931).

[2] D. Koester and G. Chanmugam, Rep. Prog. Phys. 53 837 (1990).

[3] R. H. Fowler, J. Astrophys. Astr. 15 115 (1994).

[4] D. Koester, Astron. Astrophys. Rev. 11 33 (2002).

[5] D. M. S. Zaman, M. Amina, P. R. Dip, and A. A. Mamun, Eur. Phys. J. Plus 132 457 (2017).

[6] H. A. Atwater, Sci. Am. 296 56 (2007).

[7] M. I. Stockmann, Phys. Today 64 39 (2011).

[8] S. A. Wolf, D. Awschalom, and R. A. Buhrman, Science 294 1488 (2001).

[9] G. Manfredi and P. A. Hervieux, Appl. Phys. Lett. 91 061108 (2007).

[10] S. L. Shapiro and S. A. Teukolsky, Black Holes, White Dwarfs and Neutron Stars: the Physics of Compact Objects (John Wiley & Sons, New York, 1983).

[11] R. S. Fletcher, X. L. Zhang, and S. L. Rolston, Phys. Rev. Lett. 96 105003 (2006).

[12] T. C. Killian, Nature (London) 441 297 (2006).

[13] A. Vanderburg et al., Nature (London) 526 546 (2015).

[14] A. Witze, Nature 510 196 (2014).

[15] A. A. Mamun and P. K. Shukla, Europhys. Lett. 94 65002 (2011).

[16] M. Asaduzzaman, A. Mannan, and A. A. Mamun, Phys. Plasmas 24 052102 (2017).

[17] A. A. Mamun, Phys. Plasmas 24 102306 (2017).

[18] N. A. Chowdhury, M. M. Hasan, A. Mannan, and A. A. Mamun, Vacuum 147 31 (2018).

[19] T. Taniuti and N. Yajima, J. Math. Phys. 10 1369 (1969).

[20] N. A. Chowdhury, A. Mannan, M. M. Hasan, and A. A. Mamun, Chaos 27 093105 (2017).

[21] S. Sultana and I. Kourakis, Plasma Phys. Control. Fusion 53 045003 (2011).

[22] R. Fedele and H. Schamel, Eur. Phys. J. B 27 313 (2002).

[23] I. Kourakis and P. K. Shukla, Nonlinear Proc. Geophys. 12 407 (2005).

[24] R. Fedele and H. Schamel, Eur. Phys. J. B 27 313 (2002).

[25] N. A. Chowdhury, A. Mannan, and A. A. Mamun, Phys. Plasmas 24 113701 (2017).