# Journal of Advances in Applied Physics

### Non-Locality: Possibility of Corpuscular-Wave Duality Explanation

Download PDF (605.4 KB) PP. 1 - 16 Pub. Date: November 30, 2019

### Author(s)

**Alexander Boichenko**^{*}

Institute of Fundamental Problems in Theoretical Physics and Mathematics, Moscow, Russia

### Abstract

### Keywords

### References

[1] W. Heisenberg, Physik und Philosophie. Frankfurt am Main, 1959.

[2] H. Poincare, Valeur de la science, 1905.

[3] L. De Broglie, Les Incertitudes D’Heisenberg Et L’Interpretation Probabiliste De La Macanique Ondulatore. Gauthier-Villars, Bordas, Paris, 1982. (Heisenberg uncertainty relations and probability interpretation of wave mechanics) (in French).

[4] N. Bohr, H. Kramers, C. Slater, Philosophical Magazin, vol. 47, p. 485, 1924.

[5] N. Bohr, H. Kramers, C. Slater, Zeits. f. Phys., vol. 24, p. 69, 1924.

[6] L. De Broglie, “Will quantum mechanics remain indeterministic?” Report delivered at the Synthesis Center on October 3, 1952. In: Selected scientific works. – vol. 4. Thermodynamics of an isolated particle. Reinterpretation of wave mechanics. Reports and speeches. Moscow: Publishing house "PRINT-ATELIER", 2014. pp. 239-255 (in Russian).

[7] V. V. Belokurov, O. D. Timofeevskaya, O. A. Khrustalev, Quantum teleportation is an ordinary miracle. Izhevsk: “Regular and Chaotic Dynamics”, 2000 (in Russian).

[8] L. De Broglie, “The duality of waves and particles in the works of Einstein.” Lecture at the Academy of Sciences at a public meeting on December 5, 1955. In: Selected scientific works. – vol. 4. Thermodynamics of an isolated particle. Reinterpretation of wave mechanics. Reports and speeches. Moscow: Publishing house "PRINT-ATELIER", 2014, pp. 256-276 (in Russian).

[9] W. Heizenberg, Die Naturwissenschaften, vol. 17, p. 490, 1929.

[10] G. Greenstein, A. G. Zajonc, The quantum challenge. Modern research on the foundations of quantum mechanics. Jones and Barlett Publishers, Inc., 2006.

[11] W. E. Jr. Lamb, M. O. Scully, “The photoelectric effect without photons.” In: Polarisation, Matiere et Rayonnement. Presses University de France, 1969.

[12] L. Mandel, “The case for and against semiclassical radiation theory.” Progress in Optics, vol. 13, Amsterdam: Notth-Holland, 1976.

[13] M. D. Crisp, E. T. Janes, “Radiative effects in semiclassical theory.” Phys. Rev., vol. 179. pp. 1253-1261, 1969.

[14] L. I. Gudzenko, S. I. Yakovlenko, Plasma lasers. Moscow: Atomizdat, 1978, (in Russian).

[15] B. F. Gordiets, A. I. Osipov, L. A. Shelepin, Kinetic processes in gases and molecular lasers. Moscow: "Nauka", 1980 (in Russian).

[16] S. I. Yakovlenko “Gas and plasma lasers.” In: Encyclopedia of low-temperature plasma. / Ed. V.E. Fortov. Introductory volume - vol. IV. M: "Nauka" MAIK " Nauka / Interperiodica", 2000, pp. 262-291 (in Russian).

[17] Encyclopedia of low-temperature plasma, Series B: reference applications, databases and databases. Ch. ed. Fortov V.E. Vol. XI-4: Gas and Plasma Lasers. Ed. Yakovlenko S.I. Moscow: “Fizmatlit”, 2005 (in Russian).

[18] V. M. Batenin, V. V. Buchanov, A. M. Boichenko, M. A. Kazaryan, I. I. Klimovskii, E. I. Molodykh, Highbrightness metal vapour lasers: Physical fundamentals and mathematical models. CISP: CRC Press Taylor & Francis Group (Boca Raton, London, New York), vol. 1, 2017.

[19] A. M. Boichenko, A. N. Panchenko, V. F. Tarasenko, A. N. Tkachev, S. I. Yakovlenko, N. A. Panchenko, Gas and plasma lasers. Monographic series “Radiation. Beams. Plasma.". Issue 2. Tomsk: “STT Publishing”, 2017 (in Russian).

[20] A. M. Boichenko, M. I. Lomaev, A. N. Panchenko, E. A. Sosnin, V. F. Tarasenko, UV and VUV excilamps: Physics, technique and applications. Tomsk: “STT Publishing”, 2011 (in Russian).

[21] A. M. Boichenko, Lamp Emission Sources. Theoretical description. LAP LAMBERT, Academic Publishing, 2018 (in Russian).

[22] W. Glaser, Grundlagen der elektronenoptik. Wien, Springer-Verlag, 1952.

[23] Runaway electron beams and discharges based on the background electron multiplication wave in dense gases. Ed. Yakovlenko S.I., Proceedings of IOFAN, vol. 63, Moscow: "Nauka", 2007 (in Russian).

[24] A. M. Boichenko, A. N. Tkachev, S. I. Yakovlenko, V. F. Tarasenko, Ch. 2: “Non-local criterion for electron runaway.” In: Generation of Runaway Electrons and X-Rays in the Discharges of High Pressure, Ed. Tarasenko V.F., Tomsk: STT Publishing, 2015, pp. 55-78. (in Russian).

[25] A. M. Boichenko, A. N. Tkachev, S. I. Yakovlenko, V. F. Tarasenko, E. Kh. Baksht, Ch.10: “Generation of subnanosecond electron beams in gas-filled and vacuum diodes.” In: Generation of Runaway Electrons and Xrays in the Discharges of High Pressure. Ed. Tarasenko V.F., Tomsk: STT Publishing, 2015, pp. 255-296 (in Russian).

[26] A. M. Boichenko, A. N. Tkachev, S. I. Yakovlenko, Ch. 2: “Generation of Powerful Runaway Electron Beams in Dense Gases.” In: Physics Research and Technology. Runaway Electron Beams and X-rays in High Pressure gases. vol. 2. Processes and Applications. Editor: Tarasenko V.F., Nova Science Publishers, NY, USA, 2016, pp. 41-106.

[27] V. P. Vizgin, Unified field theories in a quantum-relativistic revolution. The program of field historical synthesis of physics. Moscow: URSS, 2017 (in Russian).

[28] O. N. Krokhin, “On the nature of the photon.” Physical education in universities, vol. 21, no. 3, pp. 19-23, 2015 (in Russian).

[29] M. Creutz, Quarks, gluons and lattices. Cambridge University Press, 1983.

[30] B. Greene, The fabric of the cosmos. Space, time, and the texture of reality. Alfred A. Knopf, New York, 2014.

[31] R. P. Feynman, A. R. Hibbs, Quantum mechanics and path integrals. McGray W-Hill Book Company, New York, 1965.

[32] A. Einstein, B. Podolsky, N. Rosen, Phys. Rev., vol. 47, p. 777, 1935.

[33] E. Scrodinger, Proc. Cambr. Phil. Soc., vol. 31, p. 555, 1935.

[34] J. S. Bell, Physics, vol. 1, p. 195, 1964.

[35] A. M. Boichenko, “Local/Nonlocal Descriptions in Physics and Dimension of Space.” Phys. Astron. Int. J., vol. 1, no. 6, p. 00034, 2017.

[36] Y. Kim, R. Yu, S. Kulik, Y. Shih, M. Scully, Phys. Rev. Lett., vol. 84, pp. 1-5, 2000.

[37] M. G. Ivanov, How to understand quantum mechanics? Moscow-Izhevsk: RHD, 2015 (in Russian).

[38] A. Aspect, P. Grangier, G. Roger, Phys. Rev. Lett., vol. 47, p. 460, 1981.

[39] A. Aspect, P. Grangier, G. Roger, Phys. Rev. Lett., vol. 49, p. 91, 1982.

[40] A. Aspect, J. Dalibar, G. Roger, Phys. Rev. Lett., vol. 49, p. 1804, 1982.

[41] R.P. Feynman, Quantum electrodynamics. A lecture note. W.A. Benjamin, Inc. New York, 1961.

[42] N. N. Bogolyubov, D. V. Shirkov, Introduction to the theory of quantified fields. Moscow: “Nauka”, 1984 (in Russian).

[43] S. Weinberg, The quantum theory of fields, vol. 1-3. Cambridge University Press, 2000.

[44] M. E. Peskin, D. V. Schroeder, An introduction to quantum field theory. Addison-Wesley Publishing Company, 1995.

[45] M. B. Green, J. H. Schwarz, E. Witten. Superstring theory, Cambridge University Press, 1987.

[46] G. V. Efremov. Problems of nonlocal interaction quantum theory. Moscow: “Nauka”, 1985 (in Russian).

[47] B. M. Barbashov, V. V. Nesterenko. Model of relative string in hadron physics. Moscow: “Energoatomizdat”, 1987 (in Russian).

[48] L. Brink, M. Henneaux. Principles of string theory. Plenum Press, 1988.

[49] M. Kaku. Introduction to superstrings. Springer-Verlag, 1988.

[50] S. V. Ketov. Nonlinear sigma models in quantum field theory and string theory. Moscow: "Nauka", 1992 (in Russian).

[51] K. Becker, M. Becker, J. H. Schwarz. String theory and M-theory. A modern introduction. Cambridge University Press, 2007.

[52] B. Zwiebach. A First Course in String Theory. Cambridge University Press, 2004.

[53] S. V. Ketov. Introduction to quantum theory of strings and superstrings. Moscow, URSS, 2018 (in Russian).

[54] P. A. Collins, R. W. Tucker. Nucl. Phys. vol. B112, no. 1, pp. 150-176, 1976.

[55] L. Mlodinow. Feynman’s Rainbow. A Search for Beauty in Physics and in Life. Livebook Publishing Ltd, 2014.

[56] G. Veneziano. Nuovo Cimento, vol. 57A, p. 190, 1968.

[57] Y. Nambu In.: Proc. Int. Conf. on Symm. and Quark Models. Wayne State Univ., 1969, Gordon and Breach, London, 1970.

[58] H. Nielsen. In: 15th Int. Conf. on High Energy Physics, Kiev, 1970.

[59] L. Susskind. Phys. Rev., vol. D1, p. 1182, 1970.

[60] P. M. Ramond. Phys. Rev., vol. D3, p. 2415, 1971.

[61] A. Neveu, J. H. Schwartz. Nucl. Phys., vol. B31, p. 86, 1971; Phys. Rev., vol. D4, p. 1109, 1971.

[62] L. Brink, D. Olive, C. Rebbi, J. Scherk. Phys. Lett., vol. B45, p. 379, 1973.

[63] A. M. Boichenko. “Dimension of space. Is it constant?” Phys. J., vol. 1, no. 3, pp. 245-254, 2015.

[64] A. M. Boichenko. “The cosmological constant as a consequence of the evolution of space.” Russian Physics Journal, vol. 59, no. 8, pp. 1171-1180, 2016.

[65] A. M. Boichenko “Derivation of Heisenberg uncertainty relations in the non-local approach of string theory.” Asian J. Applied Sci., vol. 11, no. 3, pp. 151-162, 2018.

[66] W. Heisenberg. Physical principles of quantum theory. Moscow-Izhevsk: ”Regular and chaotic dynamics”, 2002 (in Russian).

[67] E. Schrödinger. “Zon Heisenbergschen Unscharfeprinzip.” Ber. Kgl. Akad. Wiss. Berlin, pp. 296-303, 1930.

[68] H. P. Robertson. “A general formulation of the uncertainty principle and its classical interpretation.” Phys. Rev. A, vol. 35, no. 5, pp. 667, 1930.

[69] A. E. Haas. Materiewellen und Quantenmechanik. Leipzig: Akademishe Verlagsgessellschaft, 1928.

[70] V. V. Dodonov, V. I. Man’ko. “Generalizations of uncertainty relations in quantum mechanics.” In: Invariants and evolution of nonstationary quantum systems. Ed. in Chief Basov N. G., Ed. Markov M. A. Proceedings FIAN, vol. 183, Moscow: “Nauka”, 1987, pp. 5-70 (in Russian).

[71] M. J. Bastiaans. “Uncertainty principle for partially coherent light.” J. Opt. Soc. Amer., vol. 73, no. 3, pp. 251- 255, 1983.

[72] M. J. Bastiaans. “Lower bound in the uncertainty principle for partially coherent light.” J. Opt. Soc. Amer., vol. 73, no. 10, pp. 1320-1324, 1983.

[73] M. J. Bastiaans. “New class of uncertainty relations for partially coherent light.” J. Opt. Soc. Amer. A, vol. 1, no. 7, pp. 711-715, 1984.

[74] A. M. Boichenko. “Entropy as invariant of dynamic system.” Quantum Computers and Computing, vol. 5, no. 1, pp. 65-73, 2005.