Isaac Scientific Publishing

Advances in Analysis

Ergodic Theorems for the Transfer Operators of Noisy Dynamical Systems

Download PDF (794.5 KB) PP. 125 - 142 Pub. Date: October 8, 2018

DOI: 10.22606/aan.2018.34001

Author(s)

  • Eleonora Catsigeras*
    Instituto de Matemática y Estadística "Rafael Laguardia", Universidad de la República, Uruguay

Abstract

We consider stationary stochastic dynamical systems evolving on a compact metric space, by perturbing a deterministic dynamics with a random noise, added according to an arbitrary probabilistic distribution. We prove the maximal and pointwise ergodic theorems for the transfer operators associated to such systems. The results are extensions to noisy systems of some of the fundamental ergodic theorems for deterministic systems. The proofs are analytic. They follow the rigorous deductive method of the classic proofs in pure mathematics.

Keywords

Ergodic theorems, transfer operator, stochastic systems, noisy dynamics.

References

[1] G.D. Birkhoff, "Proof of the Ergodic Theorem", Proc. Nat. Acad. Sciences, vol. 17, pp. 656–660, 1931.

[2] R. Ma?é, Ergodic Theory and Differentiable Dynamics, Springer-Verlag, Berlin, 1987.

[3] A. Katok, B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge Univ. Press, Cambridge, 1999.

[4] I.P. Cornfeld, S.V. Fomin, Ya. G. Sinai, Ergodic Theory, Springer-Verlag, Berlin, Re-edition 2012.

[5] J.F. Kingman, "Subadditive Ergodic Theory", Annals Prob., vol. 1. pp. 889–909, 1973.

[6] S. Gou?zel, A. Karlsson, "Subadditive and Multiplicative Ergodic Theorems", ArXiv: 1509.07733 [math.DS], 2015.

[7] V.I. Oseledets, "A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems", Trans. Moscow Math. Soc., vol. 19, pp. 197–231, 1968.

[8] S. Filip, "Notes on the multiplicative ergodic theorem", Ergodic Th. & Dyn. Sys., Published on line, 2017.

[9] E. Catsigeras, Teoría Ergódica de los Sistemas Dinámicos Discretos (in Spanish), Univ. de la República, Montevideo, 2013.

[10] T. Eisner, B. Farkas, M. Haase, R. Nagel, Operator Theoretic Aspects of Ergodic Theory, Springer, Heidelberg- New York, 2015.

[11] T. Eisner, D. Kunszenti-Kovács, "On the entangled ergodic theorem", Ann. Scuola Norm. Super. Pisa Cl. Sci., vol XII, pp. 141–156, 2013.

[12] A. Tempelman, Ergodic theorems for group actions: Informational and Thermodynamical Aspects, Springer, Dorchrecht, Re-Edition 2013.

[13] A. Karlsson, F. Ledrappier, "Noncommutative Ergodic Theorems", ArXiv 1110.6847 [math.DS], 2011.

[14] H.H. Rugh, D. Thomine, "Ratio ergodic theorems: from Hopf to Birkhoff and Kingman", ArXiv 1802.08439, 2018.

[15] J. Aaronson, An Introduction to Infinite Ergodic Theory, Math. Surveys and Monographs Vol. 50, Amer. Math. Soc., Providence, 1997.

[16] E. Roy, "Poisson suspensions and infinite ergodic theory", Erg. Th. & Dyn. Sys., vol. 29, pp. 667–683, 2009.

[17] T. Austin, "On the norm convergence of non-conventional ergodic averages", Erg. Th. & Dyn. Sys., vol. 30, pp. 321–338, 2010.

[18] T. de la Rue, "Notes on Austin’s multiple ergodic theorem", ArXiv 0907.0538, 2009.

[19] C. González-Tokman, A. Quass, "A semi-invertible operator Oseledets theorem", Erg. Th. & Dyn. Sys., vol. 34, pp. 1230–1272, 2014.

[20] S. Kakutani, "Random ergodic theorems and Markoff processes with a stable distribution", . Proc 2nd. Berkeley Symp., pp. 247–261, 1951.

[21] K. Yosida, Functional Analysis, Springer-Verlag, Heidelberg, 1978.

[22] D. Faranda, J. Milhazes Freitas, P. Guiraud, S. Vaienti, "Statistical properties of random dynamical systems with contracting direction", Journ. of Physics A: Math. Theor. , vol. 49, No. 204001, 2016.

[23] Y. Kifer: Ergodic theory of random transformations, Birkh?user, Boston, 1986.

[24] L. Arnold: Random dynamical systems. Springer-Verlag, Heidelberg–Berlin, 1998.

[25] A.G. Kachurovskii, V.V. Sedalishchev, "Constants in estimates for the rates of convergence in von Neumann’s and Birkhoff’s ergodic theorems", Sbornik: Mathematics, vol. 202, 2011.

[26] L. Rey-Bellet, L.S. Young, "Large deviations in non-uniformly hyperbolic dynamical systems", Erg. Th. & Dyn. Sys., vol. 28, pp. 587–612, 2008.

[27] I. Mezic, "Spectral Properties of Dynamical Systems, Model Reduction and Decompositions", Nonlinear Dynamics, vol. 41, pp. 309–325, 2005.

[28] W. Bahsoun, H. Hu, S. Vaienti, "Pseudo-Orbits, Stationary Measures and Metastability", Dynamical Systems, vol. 29, pp. 322–336, 2014. 142