Advances in Analysis
Ergodic Theorems for the Transfer Operators of Noisy Dynamical Systems
Download PDF (794.5 KB) PP. 125 - 142 Pub. Date: October 8, 2018
Author(s)
- Eleonora Catsigeras*
Instituto de Matemática y Estadística "Rafael Laguardia", Universidad de la República, Uruguay
Abstract
Keywords
References
[1] G.D. Birkhoff, "Proof of the Ergodic Theorem", Proc. Nat. Acad. Sciences, vol. 17, pp. 656–660, 1931.
[2] R. Ma?é, Ergodic Theory and Differentiable Dynamics, Springer-Verlag, Berlin, 1987.
[3] A. Katok, B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge Univ. Press, Cambridge, 1999.
[4] I.P. Cornfeld, S.V. Fomin, Ya. G. Sinai, Ergodic Theory, Springer-Verlag, Berlin, Re-edition 2012.
[5] J.F. Kingman, "Subadditive Ergodic Theory", Annals Prob., vol. 1. pp. 889–909, 1973.
[6] S. Gou?zel, A. Karlsson, "Subadditive and Multiplicative Ergodic Theorems", ArXiv: 1509.07733 [math.DS], 2015.
[7] V.I. Oseledets, "A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems", Trans. Moscow Math. Soc., vol. 19, pp. 197–231, 1968.
[8] S. Filip, "Notes on the multiplicative ergodic theorem", Ergodic Th. & Dyn. Sys., Published on line, 2017.
[9] E. Catsigeras, Teoría Ergódica de los Sistemas Dinámicos Discretos (in Spanish), Univ. de la República, Montevideo, 2013.
[10] T. Eisner, B. Farkas, M. Haase, R. Nagel, Operator Theoretic Aspects of Ergodic Theory, Springer, Heidelberg- New York, 2015.
[11] T. Eisner, D. Kunszenti-Kovács, "On the entangled ergodic theorem", Ann. Scuola Norm. Super. Pisa Cl. Sci., vol XII, pp. 141–156, 2013.
[12] A. Tempelman, Ergodic theorems for group actions: Informational and Thermodynamical Aspects, Springer, Dorchrecht, Re-Edition 2013.
[13] A. Karlsson, F. Ledrappier, "Noncommutative Ergodic Theorems", ArXiv 1110.6847 [math.DS], 2011.
[14] H.H. Rugh, D. Thomine, "Ratio ergodic theorems: from Hopf to Birkhoff and Kingman", ArXiv 1802.08439, 2018.
[15] J. Aaronson, An Introduction to Infinite Ergodic Theory, Math. Surveys and Monographs Vol. 50, Amer. Math. Soc., Providence, 1997.
[16] E. Roy, "Poisson suspensions and infinite ergodic theory", Erg. Th. & Dyn. Sys., vol. 29, pp. 667–683, 2009.
[17] T. Austin, "On the norm convergence of non-conventional ergodic averages", Erg. Th. & Dyn. Sys., vol. 30, pp. 321–338, 2010.
[18] T. de la Rue, "Notes on Austin’s multiple ergodic theorem", ArXiv 0907.0538, 2009.
[19] C. González-Tokman, A. Quass, "A semi-invertible operator Oseledets theorem", Erg. Th. & Dyn. Sys., vol. 34, pp. 1230–1272, 2014.
[20] S. Kakutani, "Random ergodic theorems and Markoff processes with a stable distribution", . Proc 2nd. Berkeley Symp., pp. 247–261, 1951.
[21] K. Yosida, Functional Analysis, Springer-Verlag, Heidelberg, 1978.
[22] D. Faranda, J. Milhazes Freitas, P. Guiraud, S. Vaienti, "Statistical properties of random dynamical systems with contracting direction", Journ. of Physics A: Math. Theor. , vol. 49, No. 204001, 2016.
[23] Y. Kifer: Ergodic theory of random transformations, Birkh?user, Boston, 1986.
[24] L. Arnold: Random dynamical systems. Springer-Verlag, Heidelberg–Berlin, 1998.
[25] A.G. Kachurovskii, V.V. Sedalishchev, "Constants in estimates for the rates of convergence in von Neumann’s and Birkhoff’s ergodic theorems", Sbornik: Mathematics, vol. 202, 2011.
[26] L. Rey-Bellet, L.S. Young, "Large deviations in non-uniformly hyperbolic dynamical systems", Erg. Th. & Dyn. Sys., vol. 28, pp. 587–612, 2008.
[27] I. Mezic, "Spectral Properties of Dynamical Systems, Model Reduction and Decompositions", Nonlinear Dynamics, vol. 41, pp. 309–325, 2005.
[28] W. Bahsoun, H. Hu, S. Vaienti, "Pseudo-Orbits, Stationary Measures and Metastability", Dynamical Systems, vol. 29, pp. 322–336, 2014. 142