# Advances in Analysis

### Modified Eccentric Connectivity Index and Polynomial of Tetragonal Carbon Nanocones *CNC*_{4}[n]

_{4}[n]

Download PDF (363.6 KB) PP. 30 - 34 Pub. Date: January 15, 2017

### Author(s)

**Linli Zhu**^{*}

School of Computer Engineering, Jiangsu University of Technology, Changzhou 213001, China**Wei Gao**

School of Information Science and Technology, Yunnan Normal University, Kunming 650500, China

### Abstract

*CNC*

_{4}

*[*

*n*

*]*are reported. The theoretical results achieved in this article illustrate the promising prospects of the application to the chemical and pharmacy engineering.

### Keywords

### References

[1] M. R. Farahani, W. Gao, “On Multiplicative and Redefined Version of Zagreb Indices of V-Phenylenic Nanotubes and Nanotorus”, British Journal of Mathematics & Computer Science, vol. 13, no. 5, pp. 1–8, 2016.

[2] M. R. Farahani, W. Gao, M. R. Rajesh Kanna, “On the Omega Polynomial of A Family of Hydrocarbon Moleculs ‘Polycyclic Aromatic Hydrocarbons PAHk’”, Asian Academic Research Journal of Multidisciplinary, vol. 2, no. 7, pp. 263-268, 2015.

[3] M. R. Farahani, W. Gao, M. R. Rajesh Kanna, “The Connective Eccentric Index for An Infinite Family of Dendrimers”, Indian Journal of Fundamental and Applied Life Sciences, vol. 5, no. S4, pp. 766-771, 2015.

[4] M. R. Farahani, M. R. Rajesh Kanna, W. Gao, “The Edge-Szeged Index of the Polycyclic Aromatic Hydrocarbons PAHk”, Asian Academic Research Journal of Multidisciplinary, vol. 5, no. 6, pp. 136-142, 2015.

[5] M. R. Farahani, W. Gao, “The multiply version of Zagreb indices of a family of molecular graph”, Journal of Chemical and Pharmaceutical Research, vol. 7, no. 10, pp. 535-539, 2015.

[6] M. R. Farahani, W. Gao, “The Schultz Index and Schultz Polynomial of the Jahangir Graphs J5,m,”, Applied Mathematics, no. 6, pp. 2319-2325, 2015.

[7] M. R. Farahani, M. R. Rajesh Kanna, W. Gao, “The Schultz, modified Schultz indices and their polynomials of the Jahangir graphs Jn,m for integer numbers n=3, m ≥ 3”, Asian Journal of Applied Sciences, vol. 3, no. 6, pp. 823-827, 2014.

[8] W. Gao, M. R. Farahani, “Degree-based indices computation for special chemical molecular structures using edge dividing method”, Applied Mathematics and Nonlinear Sciences, vol. 1, no. 1, pp. 94–117, 2015.

[9] W. Gao, M. R. Farahani, “The Theta polynomial Θ(G,x) and the Theta index Θ(G) of molecular graph Polycyclic Aromatic Hydrocarbons PAHk”, Journal of Advances in Chemistry, vol. 12, no. 1, pp. 3934- 3939, 2015.

[10] W. Gao, Y. Gao, “A Note on Connectivity and λ-Modified Wiener Index”, Iranian Journal of Mathematical Chemistry, vol. 6, no. 2, pp. 137-143, 2015.

[11] J. A. Bondy, U. S. R. Mutry. “Graph Theory”, Springer, Berlin, pp. 1-40, 2008.

[12] A. R. Ashrafi, M. Ghorbani, “A study of fullerenes by MEC polynomials”, Electronic Materials Letters, vol. 6, no. 2, pp. 87-90, 2010.

[13] M. Alaeiyan, J. Asadpour, R. Mojarad, “A numerical method for MEC polynomial and MEC index of one-pentagonal carbon nanocones”, Fullerenes, Nanotubes and Carbon Nanostructures, vol. 21, no. 10, pp. 825–835, 2013.

[14] A. R. Ashrafi, M. Ghorbani, M. A. Hossein-Zadeh, “The eccentric connectivity polynomial of some graph operations”, Serdica Journal of computing, vol. 5, no. 2, pp. 101–116, 2011.

[15] N. Trinajstic, “Chemical Graph Theory”. CRC Press, Boca Raton, 1992.

[16] V. Kumar, A. K. Modan, “Apllication of graph theory: Models for prediction of carbonic anhydrase inhibitory activity of sulfonamides”, J Math Chem., no. 42, pp. 925-940, 1991.