# Advances in Analysis

### A Note on Positive Periodic Solutions of the Superlinear Heat Equation with Inhomogeneity

Download PDF (479.3 KB) PP. 14 - 18 Pub. Date: January 15, 2017

### Author(s)

**Shanming Ji**

School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China**Jingxue Yin**

School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China**Jian Deng**^{*}

School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China

### Abstract

### Keywords

### References

[1] M. J. Esteban, On periodic solutions of superlinear parabolic problems, Trans. Amer. Math. Soc., 293(1986), 171–189.

[2] M. J. Esteban, A remark on the existence of positive periodic solutions of superlinear parabolic problems, Proc. Amer. Math. Soc., 102 (1988), 131–136.

[3] N. Hirano, N. Mizoguchi, Positive unstable periodic solutions for superlinear parabolic equations, Proc. Amer. Math. Soc., 123(1995), 1487–1495.

[4] O. A. Lady?enskaya, V. A. Solonnikov, N. N. Uraltseva, Linear and quasilinear equations of parabolic type, Transl. of Math. Monogr. 23, A.M.S., Providence, R.I., 1968.

[5] M. ?tani, Nonmonotone perturbations for nonlinear parabolic equations associated with subdifferential operators, periodic problems, J. Differential Equations (1984), 248–273.

[6] P. Quittner, Multiple equilibria, periodic solutions and a priori bounds for solutions in superlinear parabolic problems, NoDEA Nonlinear Differential Equations Appl., 11(2004), 237–258.

[7] Y. F. Wang, J. X. Yin, Z. Q. Wu, Periodic solutions of evolution p-Laplacian equations with nonlinear sources, J. Math. Anal. Appl., 219(1998),76–96.

[8] J. X. Yin, C. H. Jin, Periodic solutions of the evolutionary p-Laplacian with nonlinear sources, J. Math. Anal. Appl., 368(2010), 604–622.