联系我们
Isaac Scientific Publishing
Theoretical Physics
TP > Volume 6, Number 2, June 2021

Quantum Propagators for Geodesic Congruences

Download PDF  (1418.2 KB)PP. 9-17,  Pub. Date:July 26, 2021
DOI: 10.22606/tp.2021.62001

Author(s)
Miguel Socolovsky
Affiliation(s)
Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Cd. Universitaria, 04510, Ciudad de México, México
Abstract
Using the Raychaudhuri equation, we show that a quantum probability amplitude (Feynman propagator) can be univocally associated to any timelike or null affinely parametrized geodesic congruence.
Keywords
Raychaudhuri equation, geodesic congruence, Feynman propagator, Schwarzschild metric
References
  • [1]  Raychaudhuri, A. Relativistic Cosmology. I, Physical Review 98, 1123-1126, (1955).
  • [2]  Kar, S. and Sengupta, S. The Raychaudhuri equations: A brief review, Pramana 69, 49-76, (2007).
  • [3]  Tipler, F.J. General Relativity and Conjugate Ordinary Differential Equations, Journal of Differential Equations 30, 165-174, (1978).
  • [4]  Teschl, G. Ordinary Differential Equations and Dynamical Systems, Providence: American Mathematical Society, (2012).
  • [5]  Feynman, R.P. and Hibbs, A.R. Quantum Mechanics and Path Integrals, McGraw-Hill, N.Y., (1965).
  • [6]  Schulman, L.S. Techniques and Applications of Path Integration, Wiley, N.Y., (1981).
  • [7]  Kruskal, M.D. Maximal extension of Schwarzschild metric, Physical Review 119, 1743-1745, (1960).
  • [8]  Szekeres, G. On the singularities of a Riemannian manifold, Publ. Math. Debrecen 7, 285-301, (1960).
  • [9]  Ehlers, J. The Nature and Structure of Spacetime, in The Physicist’s Conception of Nature, J. Mehra (ed.), D. Reidel Pub. Co., Dordrecht-Holland, 71-91, (1973); Ehlers, J., Pirani, F.A.E., and Schild, A., The geometry of free fall and light propagation, republication: General Relativity and Gravitation 44, 1587-1609, (2012).
  • [10]  Rovelli, C. Quantum Gravity, Cambridge University Press, pbk. ed. (2008).
  • [11]  álvarez, E. Windows on Quantum Gravity, Fortschritte der Physik 69, 2000080, 1-29, (2021).
  • [12]  Baez, J.C. and Bunn, E.F. The meaning of Einstein equation, American Journal of Physics 73, 644-652, (2005).
  • [13]  Gradshtein, I.S. and Ryzhik, I.M. Table of Integrals, Series, and Products, Academic Press, (1980).
  • [14]  Arfken, G.B. and Weber, H.J. Mathematical Methods for Physicists, Academic Press, San Diego, (2001).
  • [15]  Poisson, E. A Relativistic Toolkit, The Mathematics of Black-Hole Mechanics, Cambridge University Press, (2004).
  • [16]  Socolovsky, M. Eikonal Equations for Null Radial Geodesics in the Schwarzschild Metric, Theoretical Physics 5, 41-49, (2020).
  • [17]  Modesto, L. Disappearance of the black hole singularity in loop quantum gravity, Physical Review D 70, 124009, 1-5, (2004).
  • [18]  Senovilla, J.M.M. and Garfinkle, D. The 1965 Penrose singularity theorem, Classical and Quantum Gravity 32, 124008, 1-45, (2015).
Copyright © 2020 Isaac Scientific Publishing Co. All rights reserved.