Isaac Scientific Publishing

Theoretical Physics

Dust-ion-acoustic Solitary Waves and Their Instability in a Magnetized Adiabatic Dusty Electronegative Plasma

Download PDF (985.3 KB) PP. 47 - 56 Pub. Date: June 1, 2019

DOI: 10.22606/tp.2019.42001

Author(s)

  • O. Rahman and M. M. Haider
    Department of Physics, Mawlana Bhashani Science and Technology University, Santosh, Tangail, Bangladesh

Abstract

The basic features of a nonlinear obliquely propagating dust-ion-acoustic (DIA) solitary waves (SWs) in a magnetized adiabatic dusty electronegative plasma (MADENP) containing Maxwellian electrons, vortex-like (trapped) negative ions, positively charged stationary dust, and adiabatic mobile inertial positive ions have been theoretically investigated. The well known modified Zakharov Kuznetsov (mZK) is derived by using the reductive perturbation technique. The dependence of solitary wave structures on positive ion adiabaticity, external magnetic field (obliqueness), trapped negative ions, and positively charged stationary dust are studied explicitly. The three-dimensional instability of this DIASWs is also analyzed using small-k perturbation expansion technique. It is found that the nature of DIASW, the instability criterion and the growth rate of unstable perturbations are significantly modified by the external magnetic field, the propagation directions of both the nonlinear waves and their perturbation modes.

Keywords

Dust-ion-acoustic solitary waves, adiabatic dusty plasma, trapped negative ions.

References

[1] P. V. Bliokh and V. V. Yaroshenko, “Electrostatic Waves in Saturns Rings”, Soviet Astronomy, vol. 29, pp. 330-336, 1985.

[2] U. de Angelis, V. Formisano, and M. Giordano, “Ion plasma waves in dusty plasmas: Halley’s comet”, Journal of Plasma Physics, vol. 40, pp. 399-406, 1988.

[3] P. K. Shukla and A. A. Mamun, “Introduction to dusty plasma physics”, IoP Publishing Ltd., Bristol, 2002.

[4] R. L. Merlino, A. Barkan, C. Thomson, and N. D’Angelo, “ Laboratory studies of waves and instabilities in dusty plasmas”, Physics of Plasmas, vol. 5, pp. 1607-1614, 1998.

[5] P. K. Shukla and V. P. Silin, “Dust ion-acoustic wave”, Physica Scripta, vol. 45, pp. 508-508, 1992.

[6] A. Barkan, N. D’Angelo, and R. L. Merlino, "Experiment on ion-acoustic waves in dusty plasmas", Planetary and Space Science, vol. 44, pp. 239-242, 1996.

[7] A. Barkan, N. D’Angelo, and R. L. Merlino, “Charging of dust grains in a plasma”, Physical Review Letters, vol. 73, pp. 3093-3096, 1994.

[8] E. C. Whipple, “Potentials of surfaces in space”, Reports on Progress in Physics, vol. 44, pp. 1197-1250, 1981.

[9] V. W. Chow, D. A. Mendis, and M. Rosenberg, “Role of grain size and particle velocity distribution in Secondary Electron Emission in Space Plasmas”, Journal of Geophysical Research, vol. 98, pp. 19065-19076, 1993.

[10] D. A. Mendis and M. Rosenberg, “Cosmic dusty plasma”, Annual Review of Astronomy and Astrophysics, vol. 32, pp. 419-463, 1994.

[11] M. Rosenberg and D. A. Mendis, “UV induced columb crystallization in dusty gas”, IEEE Transaction on Plasma Science, vol. 23, pp. 177-179, 1995.

[12] M. Horanyi, G. E. Morfill, and E. Grün, “Mechanism for the acceleration and ejection of dust grains from Jupiter’s magnetosphere”, Nature, vol. 363, pp. 144-146, 1993.

[13] V. E. Fortov, A. P. Nefedov, O. S. Vaulina, A. M. Lipaev, V. I. Molotkov, A. A. Samaryan, V. P. Nikitskii, A. I. Ivanov, S. F. Savin, A. V. Kalmykov, A. Ya. Solove’v, and P. V. Vinogradov, “Dusty plasma induced by solar radiation under microgravitational conditions: an experiment on board the Mir orbiting space station”, Journal of Experimental and Theoretical Physics, vol. 87, pp. 1087-1097, 1998.

[14] F. Sayed, M. M. Haider, A. A. Mamun, P. K. Shukla, B. Eliasson, and N. Adhikary, “Dust ion-acoustic solitary waves in a dusty plasma with positive and negative ions”, Physics of Plasmas, vol. 15, pp. 063701-7, 2008.

[15] O. Rahman, A. A. Mamun, and K.S. Ashrafi, “Dust-ion-acoustic solitary waves and their multi-dimensional instability in a magnetized dusty electronegative plasma with trapped negative ion”, Astrophysics and Space Science, vol. 335, pp. 425-433, 2011.

[16] N.R. Kundu, M.M. Masud, K.S. Ashrafi, and A.A. Mamun, “Dust-ion-acoustic solitary waves and their multi-dimensional instability in a magnetized nonthermal dusty electronegative plasma”, Astrophysics and Space Science, vol. 343, pp. 279-,287, 2013.

[17] M. M. Haider, T. Ferdous, S. S. Duha, and A. A. Mamun, “Dust-ion-acoustic solitary waves in multi-component magnetized plasmas”, Open Journal of Modern Physics, vol. 1, pp. 13-24, 2014.

[18] M. M. Haider, T. Ferdous, and S. S. Duha, “Instability due to trapped electrons in magnetized multi-ion dusty plasmas”, Journal of Theoretical and Applied Physics, vol. 9, pp. 159-166, 2015.

[19] A. A. Mamun, “Effects of adiabaticity of electrons and ions on dust-ion-acoustic solitary waves”, Physics Letters A, vol. 372, pp. 1490-1493, 2008.

[20] S. S. Duha, M. S. Rahma, A. A. Mamun, and M. G. M. Anowar, “Multidimensional instability of dust ion-acoustic solitary waves in a magnetized dusty electronegative plasma”, Journal of Plasma Physics, vol. 78, pp. 279-288, 2012.

[21] B. Kozlovsky, R. J. Murphy, and G. H. Share, “Positron-emitter production in solar flares from 3He reactions”, The Astrophysical Journal, vol. 604, pp. 892-899, 2004.

[22] W. H. Lee, E. R. Ruiz and D. Page, “Dynamical evolution of neutrino-cooled accretion disks: Detailed microphysics, Lepton-driven convection, and global energetics”, The Astrophysical Journal, vol. 632, pp. 421-437, 2005.

[23] T. Piran, “Gamma-ray bursts and the fireball model”, Physics Report, vol. 314, pp. 575-667, 1999.

[24] C. M. Surko and T. J. Murphy, “Use of the positron as a plasma particle”, Physics Fluids B, vol. 2, pp. 1372-1375, 1990.

[25] M. Tinkle, R. G. Greaves, C. M. Surko, R. L. Spencer, and G. W. Mason, “Low-order modes as diagnostics of spheroidal non-neutral plasmas”, Physical Review Letters, vol. 72, pp. 352-355, 1994.

[26] R. G. Greaves and C. M. Surko, “An electron-positron beam-plasma experiment”, Physical Review Letters, vol. 75, pp. 3846-3849, 1995.

[27] H. Schamel, “Stationary solitary, snoidal and sinusoidal ion acoustic waves”, Plasma of Physics, vol. 14, pp. 905-924, 1972.

[28] H. Schamel, “A modified Korteweg-de Vries equation for ion acoustic waves due to resonant electrons”, Journal of Plasma Physics, vol. 9, pp. 377-387, 1973.

[29] H. Schamel, “Analytic BGK modes and their modulational instability”, Journal of Plasma Physics, vol. 13, pp. 139-145, 1975.

[30] A. A. Mamun, “Solitary waves in a three-component dusty plasma with trapped ions”, Physica Scripta, vol. 57, pp. 258-260, 1998.

[31] A. A. Mamun, “Nonlinear propagation of dust-acoustic waves in magnetized a dusty plasma with vortex-like ion distribution”, Journal of Plasma Physics, vol. 59, pp. 575-580, 1998.

[32] M. G. M. Anowar, M. S. Rahman, and A. A. Mamun, “Nonlinear dust-acoustic waves in a strongly coupled dusty plasma with vortexlike ion distribution”, Physics of Plasmas, vol. 16, pp. 053704-5, 2009.

[33] H. Schamel and S. Bujarbarua, “Solitary plasma hole via ion-vortex distribution”, Physics of Fluids, vol. 23, pp. 2498-2499, 1980.

[34] A. A. Mamun, B. Eliasson, and P. K. Shukla, “Dust-acoustic solitary and shock waves in a strongly coupled liquid state dusty plasma with a vortex-like ion distribution”, Physics Letter A, vol. 332, pp. 412-416, 2004.

[35] H. Washimi and T. Taniuti, “Propagation of ion-acoustic solitary waves of small amplitude”, Physics Review Letter, vol. 17, pp. 996-997, 1966.

[36] M. Shalaby, S. K. EL-Labany, E. F. EL-Shamy, and M. A. Khaled, “Three-dimensional instability of dust ion-acoustic solitary waves in a magnetized dusty plasma with two different types of nonisothermal electrons”, Physics of Plasmas, vol. 17, pp. 113709-8, 2010.

[37] E. Infeld, “On the stability of nonlinear cold plasma waves”, Journal of Plasma Physics, vol. 8, pp. 105-110, 1972.

[38] E. Infeld and G. Rowlands, “On the stability of nonlinear cold plasma waves. Part 2”, Journal of Plasma Physics, vol. 10, pp. 293-300, 1973.

[39] E. Infeld, “Self-focusing of nonlinear ion-acoustic waves and solitons in magnetized plasmas”, Journal of Plasma Physics, vol. 33, pp. 171-182, 1985.

[40] P. K. Das and F. Verheest, “Ion-acoustic solitons in magnetized multi-component plasmas including negative ions”, Journal of Plasma Physics, vol. 41, pp. 139-155, 1989.

[41] A. A. Mamun and R. A. Cairns, “Stability of solitary waves in a magnetized non-thermal plasma”, Journal of Plasma Physics, vol. 56, pp. 175-185, 1996.