Isaac Scientific Publishing

Theoretical Physics

Self-gravitating Envelope Solitons in Astrophysical Objects

Download PDF (2059 KB) PP. 117 - 124 Pub. Date: December 1, 2018

DOI: 10.22606/tp.2018.34004

Author(s)

  • S. Khondaker*
    Department of Physics, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
  • N. A. Chowdhury
    Department of Physics, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
  • A. Mannan
    Department of Physics, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
  • A. A. Mamun
    Department of Physics, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh

Abstract

The propagation of ion-acoustic waves (IAWs) in a collisionless unmagnetized selfgravitating degenerate quantum plasma system (SG-DQPS) has been studied theoretically for the first time. A nonlinear Schrödinger equation is derived by using the reductive perturbation method to study the nonlinear dynamics of the IAWs in the SG-DQPS. It is found that for kc > k (kc < k) (where kc is critical value of the propagation constant k which determines the stable and unstable region of IAWs) the IAWs are modulationally unstable (stable), and that kc depends on the ratio of the electron number density to light ion number density. It is also observed that the self-gravitating bright envelope solitons are modulationally stable. The results obtained from our present investigation are useful for understanding the nonlinear propagation of the IAWs in astrophysical compact objects like white dwarfs and neutron stars.

Keywords

Modulational instability, reductive perturbation method, envelope solitons

References

[1] S. Chandrasekhar, Astrophys. J. 74, 81 (1931).

[2] R. H. Fowler, J. Astrophys. Astr. 15, 115 (1994).

[3] S. L. Shapiro and S. A. Teukolsky, Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects (John Wiley & Sons, New York, 1983).

[4] D. Koester and G. Chanmugam, Rep. Prog. Phys. 53, 837 (1990).

[5] D. M. S. Zaman, M. Amina, P. R. Dip, and A. A. Mamun, Eur. Phys. J. Plus 132, 457 (2017).

[6] D. Koester, Astron. Astrophys. Rev. 11, 33 (2002).

[7] P. K. Shukla and B. Eliasson, Rev. Mod. Phys. 83, 885 (2011).

[8] R. S. Fletcher, X. L. Zhang, and S. L. Rolston, Phys. Rev. Lett. 96, 105003 (2006).

[9] T. C. Killian, Nature (London) 441, 297 (2006).

[10] A. Vanderburg, J. A. Johnson, S. Rappaport, et al., Nature 526, 546 (2015).

[11] A. Witze, Nature 510, 196 (2014).

[12] N. A. Chowdhury, A. Mannan, M. M. Hasan, and A. A. Mamun, Chaos 27, 093105 (2017).

[13] S. Sultana and I. Kourakis, Plasma Phys. Control. Fusion 53, 045003 (2011).

[14] M. Asaduzzaman, A. Mannan, A.A. Mamun, Phys. Plasmas 24, 052102 (2017).

[15] A. A. Mamun, Phys. Plasmas 24, 102306 (2017).

[16] N. A. Chowdhury, M. M. Hasan, A. Mannan, and A. A. Manun, Vacuum 147, 31 (2018).

[17] S. Islam, S. Sultana, and A. A. Mamun, Phys. Plasmas 24, 092115 (2017).

[18] T. Taniuti and N. Yajima, J. Math. Phys. 10, 1369 (1969).

[19] N. A. Chowdhury, A. Mannan, and A. A. Mamun, Phys. Plasmas 24, 113701 (2017).

[20] R. Fedele and H. Schamel, Eur. Phys. J. B 27, 313 (2002).

[21] I. Kourakis and P.K. Shukla, Nonlinear Proc. Geophys. 12, 407 (2005).

[22] R. Fedele and H. Schamel, Eur. Phys. J. B 27, 313 (2002).