Isaac Scientific Publishing

Theoretical Physics

Quantum Mechanics Allows Setting Initial Conditions at a Cosmological Singularity: Gowdy Model Example

Download PDF (805.6 KB) PP. 124 - 135 Pub. Date: September 19, 2017

DOI: 10.22606/tp.2017.23003

Author(s)

  • S.L. Cherkas*
    Institute for Nuclear Problems, Belarus State University, Minsk, Belarus
  • V.L. Kalashnikov

    Institute of Photonics, Vienna University of Technology, Vienna, Austria

Abstract

It is shown that the initial conditions in the quasi-Heisenberg quantization scheme can be set at the initial cosmological singularity per se. This possibility is provided by finiteness of some quantities, namely momentums of the dynamical variables, at a singularity, in spite of infinity of the dynamical variables themselves. The uncertainty principle allows avoiding a necessity to set values of the dynamical variables at singularity, as a wave packet can be expressed through the finite momentums. Influence of the initial condition set in the singularity in such a way to a number of gravitons under a vacuum state, arising during later evolution, is investigated. It is shown that, even choosing of some special state at the singularity minimizing late time expansion rate, some amount of gravitons still appear in the late time evolution.

Keywords

Cosmological singularity, initial conditions, quantum evolution

References

[1] N. D. Birrell and P. C. W. Davis, Quantum fields in curved space. Univ. Press, 1982.

[2] A. D. Linde, Particle physics and inflationary cosmology. Harwood Academic Publishers, 1990.

[3] V. Mukhanov, Physical foundations of cosmology. Univ. Press, 2005.

[4] S. Dodelson, Modern cosmology. Academic Press, 2003.

[5] A. A. Starobinsky, “A new type of isotropic cosmological model without singularity,” Phys. Lett. vol. 91B, no. 1, pp. 99–102, 1980.

[6] A. Guth, “The inflationary universe: a possible solution to the horizon and flatness problem,” Phys. Rev. D vol. 23, no. 1, pp. 347–356, 1981.

[7] A. R. Liddle and D. H. Lyth, Cosmological inflation and large-scale structure. Univ. Press, 2000.

[8] R. Penrose, “Gravitational collapse and space-time singularities,” Phys. Rev. vol. 14, no. 3, pp. 57–59, 1965.

[9] R.Geroch, “What is a singularity in general relativity?,” Ann. Phys., NY vol. 48, no. 3, pp. 526–540, 1968.

[10] S. W. Hawking and R. Penrose, “The singularities of gravitational collapse and cosmology,” Phys. Rev. D vol. A314, no. 1519, pp. 529–548, 1970.

[11] A. Borde and A. Vilenkin,“Violation of the weak energy condition in inflating spacetimes,” Phys. Rev. D vol. 56, no. 2, pp. 717–723, 1997.

[12] A. Borde, A. H. Guth and A. Vilenkin, “Inflationary spacetimes are incomplete in past directions,” Phys. Rev. Lett. vol. 90, no 15, pp. 151301-4, 2003.

[13] J. B. Hartle and S. W. Hawking, “Wave function of the universe,” Phys. Rev. D vol. 28, no. 12, pp. 2960–2975, 1983.

[14] A. Vilenkin, “Quantum Cosmology and the Initial State of the Universe,” Phys. Rev. D vol. 37, no. 4, pp. 888–897, 1988.

[15] M. Bojowald, “Dynamical Initial Conditions in Quantum Cosmology,” Phys. Rev. Lett.vol. 87, no 12, 121301-4, 2001.

[16] M. Bojowald, “Initial Conditions for a Universe,” Gen. Rel. Grav. vol. 35, no. 11, pp. 1877–1883, 2003.

[17] C. Kiefer, “Quantum geometrodynamics: whence, whither?,” Gen. Rel. Grav. vol. 41, no. 4, pp.877–901, 2009.

[18] A. V. Minkevich, “Gauge approach to Gravity and regular Big Bang theory,” Grav. Cosmol. 12, no. 1, pp. 11–20, 2006.

[19] G. Santos, G. Gubitosi and G. Amelino-Camelia, “On the initial singularity problem in rainbow cosmology,” J. Cosmol. Astropart. Phys. no. 08, pp. 005, 2015.

[20] A. Ashtekar, A. Corichi and P. Singh, “Robustness of key features of loop quantum cosmology,” Phys. Rev. D vol. 77, no. 2, 024046-17, 2008.

[21] M. Bojowald, Quantum cosmology. A fundamental description of the Universe. Springer, 2011.

[22] M. Bojowald and G. M. Paily, “A no-singularity scenario in loop quantum gravity,” Class. Quant. Grav. vol. 29, no. 24, pp. 242002-8, 2012.

[23] V. Husain and O. Winkler, “On Singularity Resolution in Quantum Gravity,” Phys.Rev. D, vol. 69, no. 8, pp. 084016-7, 2004.

[24] P. Tarrio, M. Fernandez-Mendez and G.A. Mena Marugan, “Singularity avoidance in the hybrid quantization of the Gowdy model,” Phys. Rev. D vol. 88, no. 8, pp. 084050-11, 2013.

[25] A. Ashtekar and B. Gupt, “Generalized effective description of loop quantum cosmology,” Phys. Rev. D, vol. 92, no. 8, pp. 084060-15, 2015.

[26] B. S. DeWitt, “Quantum Theory of Gravity. I. The Canonical Theory,” Phys. Rev. vol. 160, no. 5, pp.1113–1148, 1967.

[27] J. A. Wheeler, “Superspace and nature of quantum geometrodynamics,” in Battelle Rencontres. Benjamin, 1968.

[28] S. L. Cherkas and V. L. Kalashnikov, “Quantum evolution of the Universe in the constrained quasi-Heisenberg picture: from quanta to classics?,” Grav.Cosmol. vol. 12, no. 2-3, pp. 126–129, 2006.

[29] S. L. Cherkas and V. L. Kalashnikov,“An inhomogeneous toy-model of the quantum gravity with explicitly evolvable observables,” Gen. Rel. Grav. vol. 44, no. 12, pp. 3081–3102, 2012.

[30] S. L.Cherkas and V. L. Kalashnikov, “Quantization of the inhomogeneous Bianchi I model: quasi-Heisenberg picture,” Nonlin. Phen. Compl. Syst. vol. 18, no. 1, pp. 1–14, 2015. Also available as arXiv: 1302.2229

[31] G. Vereshkov and L. Marochnik, “Quantum gravity in Heisenberg representation and self-consistent theory of gravitons in macroscopic spacetime,” J. Mod. Phys. vol. 4, no. 2, pp. 285–297, 2013.

[32] T. P. Shestakova, “Grounds for Quantum Geometrodynamics in an extended phase space and its cosmological consequences,” Grav.Cosmol. vol. 5, no. 4, pp. 297–300, 1999.

[33] V. A. Savchenko, T.P. Shestakova and G.M. Vereshkov, “Quantum geometrodynamics in extended phase space - I. Physical problems of interpretation and mathematical problems of gauge invariance,” Grav.Cosmol. vol. 7, no. 1, pp. 18–28, 2001.

[34] V. A. Savchenko, T. P. Shestakova and G. M.Vereshkov, “Quantum geometrodynamics in extended phase space - II. The Bianchi IX model,” Grav.Cosmol. vol. 7, no. 2, pp. 102–116, 2001.

[35] N. Rosen, “Quantum mechanics of a miniuniverse” Int.J.Theor.Phys. vol. 32, no. 8, pp. 1435–1440, 1993.

[36] S. Capozziello, A. Feoli and G. Lambiase, “Oscillating universes as eigensolutions of cosmological Schr?dinger equation” Int. J. Mod. Phys. vol. D 9, no. 2, pp. 143–154, 2000.

[37] A. Feoli, “Some predictions of the cosmological Schr?dinger equation” Int. J. Mod. Phys. vol. D 12, no. 8, pp. 1475–1486, 2003.

[38] B. K. Berger, “Singularity avoidance in the semiclassical Gowdy T3 cosmological model,” Phys. Lett. vol. 108B, no. 6, pp. 394–398, 1982.

[39] V. Husain, “Quantum effects on the singularity of the Gowdy cosmology,” Class. Quant. Grav. vol. 4, no. 6, 1587–1598, 1987.

[40] R. H. Gowdy, “Vacuum Spacetimes with Two-parameter Spacelike Isometry Groups and Compact Invariant Hypersurfaces: Topologies and Boundary Conditions,” Ann. Phys., NY vol. 83, no. 1, pp. 203–241, 1974.

[41] C. W. Mizner, “A minisuperspace Example: The Gowdy T3 Cosmology,” Phys. Rev. vol. 8, no. 10, pp. 3271–3285, 1973.

[42] B. K. Berger, “Quantum graviton creation in a model universe,” Ann. Phys. (NY) vol. 83, no. 2, pp. 458–490, 1974.

[43] S. V.Anischenko, “Violation of the virial theorem for the ground state of the time-dependent oscillator,” Vestnik Belarus State U., ser. Fiz.-Mat. no. 2, pp. 43–46, 2008. in Russian, posted at http://www.elib.bsu.by/handle/123456789/6085

[44] S. L. Cherkas and V. L. Kalashnikov, “Determination of the UV cut-off from the observed value of the Universe acceleration,” J. Cosmol. Astropart. Phys. no. 01, pp. 028, 2007.

[45] L. D. Faddeev and A. A. Slavnov, Gauge fields: an introduction to quantum theory. Addison-Wesley, 1987.

[46] A. Mostafazadeh, “Quantum Mechanics of Klein-Gordon-Type Fields and Quantum Cosmology,” Ann. Phys. (NY) vol. 309, no. 1, pp. 1–48, 2004.

[47] V. A. Belinskii, I. M. Khalatnikov and E. M. Lifshitz, “Oscillatory approach to a singular point in the relativistic cosmology,” Advances in Physics vol. 19, pp. 525–573, 1970.

[48] V. N. Lukash and A. A. Starobinsky, “Isotropization of cosmological expansion due to particle production,” Sov. Phys.–JETP vol. 39, no. 5, pp. 742–747, 1974.

[49] S. V. Anischenko, S.L.Cherkas and V.L. Kalashnikov, “Functional minimization method addressed to the vacuum finding for an arbitrary driven quantum oscillator,” Nonlin. Phen. Compl. Syst. vol. 12, no. 1, pp. 16–26, 2009.

[50] R. A. Isaacson, “Gravitational Radiation in the Limit of High Frequency. I. The Linear Approximation and Geometrical Optics,” Phys. Rev. vol. 166, no. 5, pp. 1263–1271, 1968.

[51] H. Gomes, S. Gryb and T. Koslowski, “Einstein gravity as a 3D conformally invariant theory,” Class.Quant.Grav. vol. 28, no. 4, pp. 045005-24, 2011.

[52] L. Smolin, “Linking shape dynamics and loop quantum gravity,” Phys. Rev. D vol. 90, no. 4, pp. 044070-10 (2014)

[53] S. L. Cherkas and V.L. Kalashnikov, “Solution of the discrete Wheeler-DeWitt equation in the vicinity of small scale factors and quantum mechanics in the space of constant negative curvature,” Dokl. Akad. Nauk. Belarus vol. 58, no. 2, pp. 45–50 (2014). Also availubal at arXiv: 1406.5837.