Journal of Advances in Molecular Biology
Estrogen Activation of CaM Kinases and Transcription Is Blocked by Vitamin D in MCF-7 Breast Cancer Cells
Download PDF (1010.8 KB) PP. 129 - 147 Pub. Date: December 14, 2017
Author(s)
- John M. Schmitt*
From the Biology Department, George Fox University, 414 N. Meridian St, Newberg, OR 97132 - Jessica Magill
From the Biology Department, George Fox University, 414 N. Meridian St, Newberg, OR 97132 - Amanda Ankeny
From the Biology Department, George Fox University, 414 N. Meridian St, Newberg, OR 97132 - Renee Geck
From the Biology Department, George Fox University, 414 N. Meridian St, Newberg, OR 97132 - Jessica Milligan
From the Biology Department, George Fox University, 414 N. Meridian St, Newberg, OR 97132 - Hannah McFarland
From the Biology Department, George Fox University, 414 N. Meridian St, Newberg, OR 97132 - Erica Rice
From the Biology Department, George Fox University, 414 N. Meridian St, Newberg, OR 97132
Abstract
Keywords
References
[1] Fuhrman, B.J., et al., Sunlight, polymorphisms of vitamin D-related genes and risk of breast cancer. Anticancer research, 2013. 33(2): p. 543-51.
[2] Garland, F.C., et al., Geographic variation in breast cancer mortality in the United States: a hypothesis involving exposure to solar radiation. Prev Med, 1990. 19(6): p. 614-22.
[3] Shao, T., P. Klein, and M.L. Grossbard, Vitamin D and breast cancer. The oncologist, 2012. 17(1): p. 36-45.
[4] Colston, K.W., et al., Vitamin D status and breast cancer risk. Anticancer research, 2006. 26(4A): p. 2573-80.
[5] Tangpricha, V., et al., Vitamin D deficiency enhances the growth of MC-26 colon cancer xenografts in Balb/c mice. The Journal of nutrition, 2005. 135(10): p. 2350-4.
[6] Ooi, L.L., et al., Vitamin D deficiency promotes growth of MCF-7 human breast cancer in a rodent model of osteosclerotic bone metastasis. Bone, 2010. 47(4): p. 795-803.
[7] Ooi, L.L., et al., Vitamin D deficiency promotes human breast cancer growth in a murine model of bone metastasis. Cancer research, 2010. 70(5): p. 1835-44.
[8] Alimirah, F., et al., Functional significance of vitamin D receptor FokI polymorphism in human breast cancer cells. PLoS One, 2011. 6(1): p. e16024.
[9] Richard, C.L., et al., Involvement of 1,25D3-MARRS (membrane associated, rapid response steroid-binding), a novel vitamin D receptor, in growth inhibition of breast cancer cells. Exp Cell Res, 2010. 316(5): p. 695-703.
[10] Boyan, B.D., et al., Plasma membrane requirements for 1alpha,25(OH)2D3 dependent PKC signaling in chondrocytes and osteoblasts. Steroids, 2006. 71(4): p. 286-90.
[11] Boland, R.L., VDR activation of intracellular signaling pathways in skeletal muscle. Mol Cell Endocrinol, 2011. 347(1-2): p. 11-6.
[12] Larriba, M.J., et al., Interaction of vitamin D with membrane-based signaling pathways. Front Physiol, 2014. 5: p. 60.
[13] Slominski, A.T., et al., Novel vitamin D hydroxyderivatives inhibit melanoma growth and show differential effects on normal melanocytes. Anticancer Res, 2012. 32(9): p. 3733-42.
[14] Slominski, A.T., et al., 20-Hydroxyvitamin D2 is a noncalcemic analog of vitamin D with potent antiproliferative and prodifferentiation activities in normal and malignant cells. Am J Physiol Cell Physiol, 2011. 300(3): p. C526-41.
[15] Kittaka, A., et al., Potent 19-norvitamin D analogs for prostate and liver cancer therapy. Future Med Chem, 2012. 4(16): p. 2049-65.
[16] Chiang, K.C., et al., MART-10, a New Generation of Vitamin D Analog, Is More Potent than 1alpha,25-Dihydroxyvitamin D(3) in Inhibiting Cell Proliferation and Inducing Apoptosis in ER+ MCF-7 Breast Cancer Cells. Evid Based Complement Alternat Med, 2012. 2012: p. 310872.
[17] Karlsson, S., et al., Vitamin D and prostate cancer: the role of membrane initiated signaling pathways in prostate cancer progression. J Steroid Biochem Mol Biol, 2010. 121(1-2): p. 413-6.
[18] Masuyama, R., et al., Vitamin D receptor in chondrocytes promotes osteoclastogenesis and regulates FGF23 production in osteoblasts. J Clin Invest, 2006. 116(12): p. 3150-9.
[19] Wang, Y., J. Zhu, and H.F. DeLuca, Identification of the vitamin D receptor in osteoblasts and chondrocytes but not osteoclasts in mouse bone. J Bone Miner Res, 2014. 29(3): p. 685-92.
[20] Cordes, T., et al., Modulation of MAPK ERK1 and ERK2 in VDR-positive and -negative breast cancer cell lines. Anticancer Res, 2006. 26(4A): p. 2749-53.
[21] Cordes, T., et al., Expression of splice variants of 1alpha-hydroxylase in mcf-7 breast cancer cells. J Steroid Biochem Mol Biol, 2007. 103(3-5): p. 326-9.
[22] Fischer, D., et al., 25-Hydroxyvitamin D3 1alpha-hydroxylase splice variants in breast cell lines MCF-7 and MCF-10. Cancer Genomics Proteomics, 2007. 4(4): p. 295-300.
[23] Berg, J.P. and E. Haug, Vitamin D: a hormonal regulator of the cAMP signaling pathway. Crit Rev Biochem Mol Biol, 1999. 34(5): p. 315-23.
[24] Boyan, B.D. and Z. Schwartz, Rapid vitamin D-dependent PKC signaling shares features with estrogen-dependent PKC signaling in cartilage and bone. Steroids, 2004. 69(8-9): p. 591-7.
[25] Carlberg, C. and M.J. Campbell, Vitamin D receptor signaling mechanisms: integrated actions of a well-defined transcription factor. Steroids, 2013. 78(2): p. 127-36.
[26] Gniadecki, R., Nongenomic signaling by vitamin D: a new face of Src. Biochem Pharmacol, 1998. 56(10): p. 1273-7.
[27] Sergeev, I.N., Vitamin D and cellular Ca2+ signaling in breast cancer. Anticancer Res, 2012. 32(1): p. 299-302.
[28] Brosseau, C.M., G. Pirianov, and K.W. Colston, Involvement of stress activated protein kinases (JNK and p38) in 1,25 dihydroxyvitamin D3-induced breast cell death. Steroids, 2010. 75(13-14): p. 1082-8.
[29] Capiati, D.A., et al., Inhibition of serum-stimulated mitogen activated protein kinase by 1alpha,25(OH)2-vitamin D3 in MCF-7 breast cancer cells. J Cell Biochem, 2004. 93(2): p. 384-97.
[30] Visram, H. and P.A. Greer, 17beta-estradiol and tamoxifen stimulate rapid and transient ERK activationin MCF-7 cells via distinct signaling mechanisms. Cancer Biol Ther, 2006. 5(12): p. 1677-82.
[31] Schmitt, J.M., et al., ERK activation and cell growth require CaM kinases in MCF-7 breast cancer cells. Mol Cell Biochem, 2010. 335(1-2): p. 155-71.
[32] Liu, J.F., et al., FGF-2 and TPA induce matrix metalloproteinase-9 secretion in MCF-7 cells through PKC activation of the Ras/ERK pathway. Biochem Biophys Res Commun, 2002. 293(4): p. 1174-82.
[33] Muscella, A., et al., PKC-zeta is required for angiotensin II-induced activation of ERK and synthesis of C-FOS in MCF-7 cells. J Cell Physiol, 2003. 197(1): p. 61-8.
[34] Rieber, M. and M. Strasberg-Rieber, p53 inactivation decreases dependence on estrogen/ERK signalling for proliferation but promotes EMT and susceptility to 3-bromopyruvate in ERalpha+ breast cancer MCF-7 cells. Biochem Pharmacol, 2014. 88(2): p. 169-77.
[35] Aksamitiene, E., et al., Prolactin-stimulated activation of ERK1/2 mitogen-activated protein kinases is controlled by PI3-kinase/Rac/PAK signaling pathway in breast cancer cells. Cell Signal, 2011. 23(11): p. 1794-805.
[36] Improta-Brears, T., et al., Estrogen-induced activation of mitogen-activated protein kinase requires mobilization of intracellular calcium. Proc Natl Acad Sci U S A, 1999. 96(8): p. 4686-91.
[37] Thomas, W., et al., Estrogen induces phospholipase A2 activation through ERK1/2 to mobilize intracellular calcium in MCF-7 cells. Steroids, 2006. 71(3): p. 256-65.
[38] Wayman, G.A., et al., Analysis of CaM-kinase signaling in cells. Cell Calcium, 2011.
[39] Colomer, J. and A.R. Means, Physiological roles of the Ca2+/CaM-dependent protein kinase cascade in health and disease. Subcell Biochem, 2007. 45: p. 169-214.
[40] Skelding, K.A., J.A. Rostas, and N.M. Verrills, Controlling the cell cycle: the role of calcium/calmodulin-stimulated protein kinases I and II. Cell Cycle, 2011. 10(4): p. 631-9.
[41] Racioppi, L. and A.R. Means, Calcium/calmodulin-dependent protein kinase kinase 2: roles in signaling and pathophysiology. J Biol Chem, 2012. 287(38): p. 31658-65.
[42] Wayman, G.A., et al., An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proc Natl Acad Sci U S A, 2008. 105(26): p. 9093-8.
[43] Chang, F., et al., Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention. Leukemia, 2003. 17(7): p. 1263-93.
[44] Wiegert, J.S. and H. Bading, Activity-dependent calcium signaling and ERK-MAP kinases in neurons: a link to structural plasticity of the nucleus and gene transcription regulation. Cell Calcium, 2011. 49(5): p. 296-305.
[45] Zhang, H.M., et al., Mitogen-induced recruitment of ERK and MSK to SRE promoter complexes by ternary complex factor Elk-1. Nucleic Acids Res, 2008. 36(8): p. 2594-607.
[46] Gille, H., et al., ERK phosphorylation potentiates Elk-1-mediated ternary complex formation and transactivation. Embo J, 1995. 14(5): p. 951-62.
[47] Cruzalegui, F.H., E. Cano, and R. Treisman, ERK activation induces phosphorylation of Elk-1 at multiple S/T-P motifs to high stoichiometry. Oncogene, 1999. 18(56): p. 7948-57.
[48] Stork, P.J. and J.M. Schmitt, Crosstalk between cAMP and MAP kinase signaling in the regulation of cell proliferation. Trends Cell Biol, 2002. 12(6): p. 258-66.
[49] Ligumsky, H., et al., The peptide-hormone glucagon-like peptide-1 activates cAMP and inhibits growth of breast cancer cells. Breast Cancer Res Treat, 2012. 132(2): p. 449-61.
[50] Davare, M.A., et al., Inhibition of calcium/calmodulin-dependent protein kinase kinase by protein 14-3-3. J Biol Chem, 2004. 279(50): p. 52191-9.
[51] Wayman, G.A., et al., Activity-dependent dendritic arborization mediated by CaM-kinase I activation and enhanced CREB-dependent transcription of Wnt-2. Neuron, 2006. 50(6): p. 897-909.
[52] Sato, K., et al., Regulation of osteoclast differentiation and function by the CaMK-CREB pathway. Nat Med, 2006. 12(12): p. 1410-6.
[53] Schmitt, J.M., et al., Calcium activation of ERK mediated by calmodulin kinase I. J Biol Chem, 2004. 279(23): p. 24064-72.
[54] Enslen, H., et al., Regulation of mitogen-activated protein kinases by a calcium/calmodulin-dependent protein kinase cascade. Proc Natl Acad Sci U S A, 1996. 93(20): p. 10803-8.
[55] Rodriguez-Mora, O.G., et al., Calcium/calmodulin-dependent kinase I and calcium/calmodulin-dependent kinase kinase participate in the control of cell cycle progression in MCF-7 human breast cancer cells. Cancer Res, 2005. 65(12): p. 5408-16.
[56] Tokumitsu, H., et al., STO-609, a specific inhibitor of the Ca(2+)/calmodulin-dependent protein kinase kinase. J Biol Chem, 2002. 277(18): p. 15813-8.
[57] Tokumitsu, H., et al., A single amino acid difference between alpha and beta Ca2+/calmodulin-dependent protein kinase kinase dictates sensitivity to the specific inhibitor, STO-609. J Biol Chem, 2003. 278(13): p. 10908-13.
[58] Bebien, M., et al., Immediate-early gene induction by the stresses anisomycin and arsenite in human osteosarcoma cells involves MAPK cascade signaling to Elk-1, CREB and SRF. Oncogene, 2003. 22(12): p. 1836-47.
[59] Aplin, A.E., et al., Integrin-mediated adhesion regulates ERK nuclear translocation and phosphorylation of Elk-1. J Cell Biol, 2001. 153(2): p. 273-82.
[60] Schmitt, J.M., et al., CaM kinase control of AKT and LNCaP cell survival. J Cell Biochem, 2012. 113(5): p. 1514-26.
[61] Evans, E.L., et al., Dimer formation and conformational flexibility ensure cytoplasmic stability and nuclear accumulation of Elk-1. Nucleic Acids Res, 2011. 39(15): p. 6390-402.
[62] Wayman, G.A., H. Tokumitsu, and T.R. Soderling, Inhibitory cross-talk by cAMP kinase on the calmodulin-dependent protein kinase cascade. J Biol Chem, 1997. 272(26): p. 16073-6.
[63] Matsushita, M. and A.C. Nairn, Inhibition of the Ca2+/calmodulin-dependent protein kinase I cascade by cAMP-dependent protein kinase. J Biol Chem, 1999. 274(15): p. 10086-93.
[64] Bellido, T., et al., Evidence for the participation of protein kinase C and 3',5'-cyclic AMP-dependent protein kinase in the stimulation of muscle cell proliferation by 1,25-dihydroxy-vitamin D3. Mol Cell Endocrinol, 1993. 90(2): p. 231-8.
[65] Anderson, K.A., et al., Hypothalamic CaMKK2 contributes to the regulation of energy balance. Cell Metab, 2008. 7(5): p. 377-88.
[66] Hell, J.W., CaMKII: claiming center stage in postsynaptic function and organization. Neuron, 2014. 81(2): p. 249-65.
[67] Shonesy, B.C., et al., CaMKII: a molecular substrate for synaptic plasticity and memory. Prog Mol Biol Transl Sci, 2014. 122: p. 61-87.
[68] Monaco, S., et al., A novel crosstalk between calcium/calmodulin kinases II and IV regulates cell proliferation in myeloid leukemia cells. Cell Signal, 2015. 27(2): p. 204-14.
[69] Lin, F., et al., The camKK2/camKIV relay is an essential regulator of hepatic cancer. Hepatology, 2015.
[70] Su, R., et al., MiR-181 family: regulators of myeloid differentiation and acute myeloid leukemia as well as potential therapeutic targets. Oncogene, 2014. 0.
[71] Racioppi, L., CaMKK2: a novel target for shaping the androgen-regulated tumor ecosystem. Trends Mol Med, 2013. 19(2): p. 83-8.
[72] Davare, M.A., T. Saneyoshi, and T.R. Soderling, Calmodulin-kinases regulate basal and estrogen stimulated medulloblastoma migration via Rac1. J Neurooncol, 2011. 104(1): p. 65-82.
[73] Zhang, Y.H., et al., Polymorphism rs7214723 in CAMKK1 and lung cancer risk in Chinese population. Tumour Biol, 2013. 34(5): p. 3147-52.
[74] Daft, P.G., et al., Alpha-CaMKII plays a critical role in determining the aggressive behavior of human osteosarcoma. Mol Cancer Res, 2013. 11(4): p. 349-59.
[75] Iglewski, M. and S.R. Grant, Urotensin II-induced signaling involved in proliferation of vascular smooth muscle cells. Vasc Health Risk Manag, 2010. 6: p. 723-34.
[76] Ma, Z., et al., Growth inhibition of human gastric adenocarcinoma cells in vitro by STO-609 is independent of calcium/calmodulin-dependent protein kinase kinase-beta and adenosine monophosphate-activated protein kinase. Am J Transl Res, 2016. 8(2): p. 1164-71.
[77] Deshmukh, R.R. and Q.P. Dou, Proteasome inhibitors induce AMPK activation via CaMKKbeta in human breast cancer cells. Breast Cancer Res Treat, 2015. 153(1): p. 79-88.
[78] Popovics, P., et al., Targeting the 5'-AMP-activated protein kinase and related metabolic pathways for the treatment of prostate cancer. Expert Opin Ther Targets, 2015. 19(5): p. 617-32.
[79] Mamaeva, O.A., et al., Calcium/calmodulin-dependent kinase II regulates notch-1 signaling in prostate cancer cells. J Cell Biochem, 2009. 106(1): p. 25-32.
[80] Chai, S., et al., Ca2+/calmodulin-dependent protein kinase IIgamma enhances stem-like traits and tumorigenicity of lung cancer cells. Oncotarget, 2015. 6(18): p. 16069-83.
[81] Hoffman, A., et al., Dephosphorylation of CaMKII at T253 controls the metaphase-anaphase transition. Cell Signal, 2014. 26(4): p. 748-56.
[82] Chen, S., et al., Fucoidan induces cancer cell apoptosis by modulating the endoplasmic reticulum stress cascades. PLoS One, 2014. 9(9): p. e108157.
[83] Rodriguez-Mora, O.G., et al., Inhibition of the CaM-kinases augments cell death in response to oxygen radicals and oxygen radical inducing cancer therapies in MCF-7 human breast cancer cells. Cancer Biol Ther, 2006. 5(8): p. 1022-30.
[84] Hidaka, H., M. Hagiwara, and H. Tokumitsu, Novel and selective inhibitors of CaM-kinase II and other calmodulin-dependent enzymes. Adv Exp Med Biol, 1990. 269: p. 159-62.
[85] Zheng, G., et al., 14-3-3sigma regulation by p53 mediates a chemotherapy response to 5-fluorouracil in MCF-7 breast cancer cells via Akt inactivation. FEBS Lett, 2012. 586(2): p. 163-8.
[86] Urano, T., et al., Efp targets 14-3-3 sigma for proteolysis and promotes breast tumour growth. Nature, 2002. 417(6891): p. 871-5.
[87] Onouchi, T., et al., Regulation of Ca(2+)/calmodulin-dependent protein kinase phosphatase (CaMKP/PPM1F) by protocadherin-gammaC5 (Pcdh-gammaC5). Arch Biochem Biophys, 2015. 585: p. 109-20.
[88] Saneyoshi, T., et al., Activity-dependent synaptogenesis: regulation by a CaM-kinase kinase/CaM-kinase I/betaPIX signaling complex. Neuron, 2008. 57(1): p. 94-107.
[89] O'Leary, H., et al., Nuclear targeting of the CaMKII anchoring protein alphaKAP is regulated by alternative splicing and protein kinases. Brain Res, 2006. 1086(1): p. 17-26.
[90] Woolfrey, K.M. and M.L. Dell'Acqua, Coordination of Protein Phosphorylation and Dephosphorylation in Synaptic Plasticity. J Biol Chem, 2015. 290(48): p. 28604-12.
[91] Hashimoto, Y., M.M. King, and T.R. Soderling, Regulatory interactions of calmodulin-binding proteins: phosphorylation of calcineurin by autophosphorylated Ca2+/calmodulin-dependent protein kinase II. Proc Natl Acad Sci U S A, 1988. 85(18): p. 7001-5.
[92] Lee, C.W., et al., Interaction between salt-inducible kinase 2 and protein phosphatase 2A regulates the activity of calcium/calmodulin-dependent protein kinase I and protein phosphatase methylesterase-1. J Biol Chem, 2014. 289(30): p. 21108-19.
[93] Chiang, K.C., et al., MART-10, a less calcemic vitamin D analog, is more potent than 1alpha,25-dihydroxyvitamin D3 in inhibiting the metastatic potential of MCF-7 breast cancer cells in vitro. J Steroid Biochem Mol Biol, 2014. 139: p. 54-60.
[94] Chiang, K.C., et al., MART-10, the new brand of 1alpha,25(OH)2D3 analog, is a potent anti-angiogenic agent in vivo and in vitro. J Steroid Biochem Mol Biol, 2016. 155(Pt A): p. 26-34.
[95] Buitrago, C., M. Costabel, and R. Boland, PKC and PTPalpha participate in Src activation by 1alpha,25OH2 vitamin D3 in C2C12 skeletal muscle cells. Mol Cell Endocrinol, 2011. 339(1-2): p. 81-9.
[96] Bernichtein, S., et al., Vitamin D3 Prevents Calcium-Induced Progression of Early-Stage Prostate Tumors by Counteracting TRPC6 and Calcium Sensing Receptor Upregulation. Cancer Res, 2017. 77(2): p. 355-365.
[97] Berridge, M.J., Vitamin D cell signalling in health and disease. Biochem Biophys Res Commun, 2015. 460(1): p. 53-71.
[98] Christakos, S., et al., Vitamin D: beyond bone. Ann N Y Acad Sci, 2013. 1287: p. 45-58.
[99] Bandera Merchan, B., et al., The role of vitamin D and VDR in carcinogenesis: Through epidemiology and basic sciences. J Steroid Biochem Mol Biol, 2017. 167: p. 203-218.
[100] LaPorta, E. and J. Welsh, Modeling vitamin D actions in triple negative/basal-like breast cancer. J Steroid Biochem Mol Biol, 2014. 144 Pt A: p. 65-73.
[101] Welsh, J., Vitamin D and breast cancer: insights from animal models. Am J Clin Nutr, 2004. 80(6 Suppl): p. 1721S-4S.