Isaac Scientific Publishing

New Horizons in Mathematical Physics

Plank’s Constant: Evaluation of Measurement Uncertainty

Download PDF (382.3 KB) PP. 21 - 28 Pub. Date: June 8, 2018

DOI: 10.22606/nhmp.2018.22001

Author(s)

  • Boris Menin*
    Mechanical & Refrigeration Consultation Expert, Beer-Sheba, Israel

Abstract

In this article, we present a new metric called the comparative uncertainty, according to which the least achievable relative uncertainty is calculated when measuring the Planck constant. To calculate the comparative uncertainty, information theory is used. The optimizing criterion is the number of quantities considered in the model. Its calculation is possible due to the fact that any model contains a certain amount of information about the object under study. Comparative uncertainty can be verified by field trials or computer simulations within a specified range of changes of the Planck constant. The concept of introduced uncertainty is universal and can be recommended for estimating the accuracy of measurements in the study of physical phenomena and technological processes. Examples of application of the proposed approach are discussed.

Keywords

Experiment, mathematical modelling, measurements, Planck constant, uncertainty

References

[1] M. Henrion and B. Fischhoff, “Assessing uncertainty in physical constants,” Amer. J. Phys., vol. 54, no. 9, pp. 791-798, 1986. http://goo.gl/wYwlBu

[2] R. T. Birge, “The calculation of errors by the method of least squares,” Phys. Rev., vol. 40, pp. 207-227, 1932.

[3] M. G. Morgan, “Uncertainty: An introduction,” CRAG Symposium, Uncertainty – from insight to action, pp. 1-62, 2013.http://goo.gl/LhyzVe

[4] S. G. Rabinovich, Evaluating Measurement Accuracy- A Practical Approach. New York: Springer Science+Business Media, 2013. https://goo.gl/OEJYmY

[5] R. Steiner, “History and progress on accurate measurements of the Planck constant,” Rep. Prog. Phys., vol. 76, no. 1,pp. 1-46, 2013. http://goo.gl/s1GomR

[6] B. N. Taylor and T. J. Witt, “New international electrical reference standards based on the Josephson and Quantum Hall effects,” Metrologia, vol. 26, no. 1, pp. 47-62, 1989.

[7] I. M. Mils, P. J. Mohr, T. J. Quinn, B. N. Taylor and E. R. Williams, “Adapting the International System of Units to the twenty-first century,” Phil. Trans. R. Soc. A, vol. 369, pp. 3907-3924, 2011.

[8] A. D. Franklin, “Millikan's Published and Unpublished Data on Oil Drops,” Historical Studies of Physical Sciences, vol.11, no. 2, pp. 185-201, 1981.

[9] H. Arakelian, LMP Fundamental theory. Erevan: Armenian National Academy of Sciences, Sarvard Hrat Ltd., 2010.http://314159.ru/arakelian/arakelian1.pdf

[10] NIST Special Publication 330 (SP330), The International System of Units (SI) 2008. http://physics.nist.gov/Pubs/SP330/sp330.pdf

[11] S. L. Vasilenko, “Mathematics of Golden cross-section through the eyes of a philosopher,” pp. 1-9, 2012, in Russian. http://goo.gl/mMerB3

[12] A. S. Burrows and J. P. Ostriker, “Astronomical reach of fundamental physics,” Proc. Natl. Acad. Sci. USA, vol. 111, no. 7, pp. 2409–2416, 2014. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3932888/

[13] B. M. Menin, “Information Measure Approach for Calculating Model Uncertainty of Physical Phenomena,” Amer.J. Comput. Appl. Math., vol. 7, no. 1, pp. 11-24, 2017. https://goo.gl/m3ukQi

[14] V. N. Matveev and O. V. Matvejev, “Uncertainty relations as a consequence of the Lorentz transformations,”ResearchGate, pp. 1- 12, 2015. https://goo.gl/3gMRVA

[15] L. Brillouin, Science and Information Theory. New York: Dover, 2004.

[16] A. A. Sonin, The Physical Basis of Dimensional Analysis. 2nd edition, Department of Mechanical Engineering, MIT, 2001. http://web.mit.edu/2.25/www/pdf/DA_unified.pdf

[17] L. Yarin, The Pi-Theorem, Experimental Fluid Mechanics. Berlin: Springer-Verlag, 2012. https://goo.gl/dtNq3D

[18] R. L. Steiner, E. R. Williams, R. Liu and D. B. Newell, “Uncertainty improvements of the NIST electronic kilogram,” IEEE Trans. Instrum. Meas., vol. 56, no. 2, pp. 592–596, 2007.

[19] I. A. Robinson and B. P. Kibble, “An initial measurement of Planck's constant using the NPL Mark II watt balance,” Metrologia, vol. 44, pp. 427–440, 2007.

[20] P. J. Mohr, B. N. Taylor and D. B. Newell, 2012 “CODATA Recommended Values of the Fundamental Physical Constants: 2010,” NIST 20899-8420.

[21] A. Eichenberger, H. Baumann, B. Jeanneret, B. Jeckelmann, P. Richard and W. Beer, “Determination of the Planck constant with the METAS watt balance,” Metrologia, vol. 48, pp. 133–141, 2011.

[22] B. Andreas et al., “Determination of the Avogadro constant by counting the atoms in a 28Si crystal,” Phys. Rev. Lett., 106, 030801, pp. 1-4, 2011.

[23] S. Schlamminger, D. Haddad, F. Seifert, L. S. Chao, D. B. Newell, R. Liu, R. L. Steiner and J. R. Pratt, “Determination of the Planck constant using a watt balance with a superconducting magnet system at the National Institute of Standards and Technology,” Metrologia, vol. 51, no.15, pp. 1-22, 2014. http://goo.gl/hxLYTJ

[24] C. A. Sanchez, B. M. Wood, R. G. Green, J. O. Liard and D. Inglis, “A measurement of Planck's constant using the NRC watt balance,” Metrologia, vol. 51, no. 2, pp. 5-14, 2014.

[25] CODATA recommended values of the fundamental physical constants: 2015. https://goo.gl/zqzsrA

[26] NIST-4 watt balance weighs in on Planck's constant 2016. https://goo.gl/jrM9tT

[27] D. Haddad, F. Seifert, L. S. Chao, A. Possolo, D. B. Newell, J. R. Pratt, C. J. Williams and S. Schlamminger, “Measurement of the Planck constant at the National Institute of Standards and Technology from 2015 to 2016,”Metrologia, vol. 54, pp. 633-641, 2017.

[28] B. M. Wood, C. A. Sanchez, R. G. Green and J. O. Liard, “A summary of the Plank constant determinations using the NRC Kibble balance,” Metrologia, vol.54, pp. 399-409, 2017. http://sci-hub.tw/10.1088/1681-7575/aa70bf

[29] R. Steiner, “History and progress on accurate measurements of the Planck constant,” Rep. Prog. Phys., vol. 76, 016101.pp. 1-47, 2013. https://sci-hub.tw/10.1088/0034-4885/76/1/016101#

[30] A. Eichenberger, G. Genev and P. Gournay, “Determination of the Planck constant by means of a watt balance,” Eur.Phys. J. Special Topics, vol. 172, pp. 363–383, 2009.

[31] D. Dodson, “Quantum Physics and the Nature of Reality (QPNR) survey: 2011,” 2013. https://goo.gl/z6HCRQ