Isaac Scientific Publishing

New Horizons in Mathematical Physics

Constructing Space Time from the String Worldsheet

Download PDF (449.1 KB) PP. 19 - 25 Pub. Date: June 23, 2017

DOI: 10.22606/nhmp.2017.11003


  • Mark D. Roberts*
    Flat 44, The Cloisters, 83 London Road, Guildford, GU1 1FY, UK


In a certain sense Riemannian geometry can be thought of as geometry built up from the Finslerian properties of point particles. The string and membrane generalization of this to a geometry similar but not the same as Finslerian geometry is investigated. Solely classical arguments suggest a physical interpretation in which microscopic strings are directly related to macroscopic geometry; alternatively the resulting geometry can be interpreted as that describing microscopic spacetime. The construction presented can be thought of as providing a mechanism for oxidization.


Dimension, dimensional increase, finsler-like geometry, membrane.


[1] E. Abdalla, K.H.C. Castello-Branco and A.Lima-Santos, Area Quantization in Quasi-Extreme Black Holes. gr-qc/0301130

[2] M.A. Akivis and B.A. Rosenfeld, Editors, Elie Cartan (1869-1951), Translation of Mathematical Monographs, Vol. 123, PP. 225-226, American Mathematical Society (1993) (English translation of the Russian).

[3] C. Barcelo, Stefano Liberati & Matt Visser, Analogue Gravity. Living Reviews in Relativity 8(2005)12.

[4] Aurel Bejancu, Finsler geometry and applications. Ellis Horwood, Chichester, England (1990). Math.Rev.91i:53075

[5] Jacob D. Bekenstein, The relation between physical and geometrical gravity. gr-qc/9211017 Phys.Rev.D48(1993)3641-3647, Math.Rev.94g:83109.

[6] F. Brickell, On the existence of metric differential geometries based on the notion of area. Proc.Cambridge Phys.Soc.46(1950)67-72, Math.Rev.003603

[7] Elie Cartan, Les espaces metriques fondes sur la notion d’aire (Metric Spaces Based on the Notion of Area), Exposes de Geometrie, Vol.I, Hermann, Paris (1937) (French).

[8] Shiing-Shen Chern, Finsler geometry is just Riemannian geometry without the quadratic restriction, Notices of the AMS September (1996)959-963.

[9] Theodore A. Jacobson, Thermodynamics of spacetime: The Eistein equation of state, Phys.Rev.Lett.75(1995)1260, Math.Rev.96f:83071.

[10] H.Lü, S.Mukherji, C.N.Pope& K.-W.Xu, Cosmological solutions in string theory, hep-th/9610107,

[11] M. Matsumoto, Foundations of Finsler geometry and special Finsler spaces. Kaisishu: Shiguken (1986). Math.Rev.88f:53111

[12] Matej Pavsic, An extra structure of spacetime: A space of points, areas and volumes. gr-qc/0611050

[13] Raffaele Punzi, Frederic P. Schuller and Mattias N.R. Wohlfarth, Massive motion in area metric spacetimes, Phys.Rev.D79(2009)124025

[14] Mark D. Roberts, The Rotation and Shear of a String. Class.Q.Grav.20(2003)507-519, Math.Rev.2003m:83134. hep-th/0204236.

[15] Mark D. Roberts, The Relative Motion of Membranes. Central European Journal of Physics8(2010)915-919, gr-qc/0404094

[16] Hanno Rund, The differential geometry of Finsler spaces. Springer Verlag, Heidelberg, 1959, Math.Rev.0105726.

[17] Sergin I. Vacaru, P. Stavrinos, E. Gaburov and D. Gonta, Clifford and Riemann-Finsler Structures in Geometric Mechanics and Gravity, gr-qc/0508023, Math.Rev.2008i:53107