Isaac Scientific Publishing

Modern Organic Chemistry Research

Toward the Toxicology of Some Nitro-Compounds

Download PDF (310.6 KB) PP. 11 - 21 Pub. Date: February 1, 2018

DOI: 10.22606/mocr.2018.31002

Author(s)

  • Bisheng Tan*
    Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang, P. R. China 621900
  • Longyu Liao
    Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang, P. R. China 621900
  • Yang Zhou
    Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang, P. R. China 621900
  • Xinping Long
    China Academy of Engineering Physics (CAEP), Mianyang, P. R. China 621900
  • Jinshan Li
    Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang, P. R. China 621900

Abstract

Keywords

Acute toxicity test; semi-lethal dose; electrostatic potentials; genetic function approximation; toxicology

References

[1] V. Purohit and A. K. Basu, “Mutagenicity of nitroaromatic compounds,” Chem. Res. Toxicol., vol. 13, pp. 673?692, 2000.

[2] Y. Y. Liu, A. Y. H. Lu and R. A. Stearns, “In vivo covalent bingding of [14C] trinitrotoluene to proteins in the rat,” Chem.Bio. Inter., vol. 82, pp.1?19, 1992.

[3] G. Sabbioni, “Hemoglobin binding of nitroarenes and quantitative structure-activity relationships,” Chem. Res. Toxicol., vol. 7, pp.267?274, 1994.

[4] G. Sabbioni and O. Sepai, “Comparison of hemoglobin binding, mutagenicity and carcinogenicity of arylamines and nitroarenes,” Chimica, vol. 49, pp.374?380, 1995.

[5] N. ?. Au?ra, M. Val?, ?. Jonas, M. Evaldas and ?. Narimantas, “Chemical aspects of cytotoxicity of nitroaromatic explosives: a review,” CHEMIJA, vol. 17, pp.34–41, 2006.

[6] K.T. Chung, C. A. Murdock, Y. Zhou, S. E. Stevens, Y. S. Li, C. Wei, S.Y. Fernando and M. W. Chou, “Effects of the nitro-group on the mutagenicity and toxicity of some benzamines,” Enviro.Mol. Mutagen.,vol. 27, pp.67–74, 1996.

[7] A. Colombo, E. Benfenati and M.Karelson, “The proposal of architecture for chemical splitting to optimize QSAR models for aquatic toxicity,” Chemosphere, vol. 72, pp. 772–780, 2008.

[8] C. Hansch, P. P. Maloney, T. Fujita and R. M. Muir, “Correlation of biological activity of phenoxyacetic acids with hammett substituent constants and partition coefficients,” Nature (London), vol. 194, pp.178–180, 1962.

[9] C. Hansch and A. Kurup, “QSAR of chemical polarizability and nerve toxicity,” J. Chem. Inf. Comput. Sci. , vol. 43, pp.1647–1651, 2003.

[10] A. R. Katritzky, M. Kuanar, S. Slavov and C. D. Hall, “Quantitative correlation of physical and chemical properties with chemical structure: utility for prediction,”Chem. Rev., vol. 110, pp. 5714–5789, 2010.

[11] S. Sild and M. Karelson, “A general QSPR treatment for dielectric constants of organic compounds,” J. Chem. Inf. Comput. Sci., vol. 42, pp. 360–367, 2002.

[12] M. Qasim, Y. Kholod, L. Gorb, D. Magers, P. Honea and J. Leszczynski, “Application of quantum-chemical approximations to environmental problems: Prediction of physical and chemical properties of TNT and related species,” Chemosphere, vol. 69, pp. 1144–1150, 2007.

[13] T. J. Sheldon, C. S. Adjiman and J. L. Cordiner, “Pure component properties from group contribution: Hydrogen-bond basicity, hydrogen-bond acidity, Hildebrand solubility parameter, macroscopic surface tension, dipole moment, refractive index and dielectric constant,” Fluid Phase Equilibria, vol. 231, pp. 27–37, 2005.

[14] P. Politzer, Y. Ma, P. Lane and M. C. Concha, “Computational prediction of standard gas, liquid, and solidphase heats of formation and heats of vaporization and sublimation,” Inter. J. Quantum Chem., vol. 105, pp. 341–347,2005.

[15] T. Singh and A. Kumar, “Static dielectric constant of room temperature ionic liquids: internal pressure and cohesive energy density approach,” J. Phys. Chem. B, vol. 112, pp. 12968–12972, 2008.

[16] S. J. Suresh and V. M. Naik,”Theory of dielectric constant of aqueous solutions,” J. Chem. Phys., vol. 116, pp. 4212–4220, 2002.

[17] V. Vasilyev, “Determination of the effective dielectric constant from the accurate solution of the poisson equation,” J.Comput. Chem., vol. 23, pp. 1254–1265, 2002.

[18] C. Caleman, P. J. van Maaren, M. Hong, J. S. Hub, L. T. Costa, and D.van der Spoel, “Force field benchmark of organic liquids: density, enthalpy of vaporization, heat capacities, surface tension, isothermal compressibility, volumetric expansion coefficient, and dielectric constant,” J. Chem. Theory Comput., vol. 8, pp. 61–74, 2012.

[19] C. Hansch, W. E. Steinmetz, A. J. Leo, S. B. Mekapati, A. Kurup and D.Hoekman, “On the role of polarizability in chemical-biological interactions,” J. Chem. Inf. Comput. Sci. Vol. 43, pp. 120–125, 2003.

[20] Y. Zhao and Z. Chai, “Nanotoxicology-safe use foundation of nanomaterials,” Beijing: Science Press, pp.1–297, 2010.

[21] P. Politzer and J. S. Murray, “Computational prediction of condensed phase properties from statistical characterization of molecular surface electrostatic potentials,” Fluid Phase Equilibria, vol. 185, pp. 129–137, 2001.

[22] J. S. Murray, T. Brinck and P. Politzer, “Relationships of molecular surface electrostatic potentials to some macroscopic properties,” Chem. Phys., vol. 204, pp. 289–299, 1996.

[23] P. Politzer, J. S. Murray and P. Flodmark, “Relationship between measured diffusion coefficients and calculated molecular surface properties,” J. Phys. Chem., vol. 100, pp. 5538–5540, 1996.

[24] P. Politzer, Y. Ma, P. Lane and M. C. Concha, “Computational prediction of standard gas, liquid, and solidphase heats of formation and heats of vaporization and sublimation,” Inter. J .Quantum Chem., vol. 105, pp. 341–347, 2005.

[25] T. Brinck; J. S. Murray and P. Politzer, “Octanol/water partition coefficients expressed in terms of solute molecular surface areas and electrostatic potentials,” J. Org. Chem., vol. 58, pp. 7070–7073, 1993.

[26] D .W. van Krevelen and K. te Nijenhius, “Properties of polymers,” Bejing: Science Press, pp.190–319, 2010.

[27] C. Hansch, W. E. Steinmetz, A. J. Leo, S. B. mekapati, A. Kurup and P. Hoekman, “On the role of polarizability in chemical- biological interactions,” J. Chem. Inf. Comput. Sci., vol. 43, pp. 120–125, 2003.

[28] T. J. Sheldon, C. S. Adjiman and T. L. Cordiner, “Pure component properties from group contribution, hydrogen-bond basicity, hydrogen-bond acidity, Hildebrand solubility parameters, macroscopic surface tension, dipole moment, refractive index and dielectric constant,” Fluid Phase Equilibra, vol. 231, pp. 27–37, 2005.

[29] A. D. Becke, “Density-functional thermochemistry. III. The role of exact exchange,” J. Chem. Phys., vol. 98, pp. 5648–5652, 1993.

[30] C. Lee, W. Yang and R. G. Parr, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density,” Phys. Rev. B, vol. 37, pp. 785–789, 1988.

[31] T. Lu and F. Chen, “Multiwfn: A multifunctional wavefunction analyzer,” J. Comput. Chem., vol. 33, pp. 580– 592, 2012.

[32] G. Liu, L. Ma and S. Xiang, “Physical Properties Data Handbook in Chemical and chemical Industry (Organic),” Bejing: Science Press, pp.226, pp. 465, pp.499, 2012.

[33] J. H. Holland, “Adaption in natural and atificial systems,” The University of Michigan Press, 1st ed, 2nd ed. Cambridge, MA: NIT Press, 1992.

[34] Y. Wen, “Toxicity data of Medicines and Chemicals,” Tianjin China: Tianjin Science and Technology Press, pp.1–458,1989.

[35] http://mathworld.wolfram.com/Ramp Function.html.

[36] J. S. Murray and P. Politzer, “Statistical analysis of the molecular surface electrostatic potential: an approach to describing noncovalent interactions in condensed phases,” J. Mol. Struct. (Theochem), vol. 425, pp. 107–114, 1998.

[37] C. Zhang, “Review of the establishment of nitro group charge method and its applications,” J. Hazar. Mater. , vol. 161, pp. 21–28, 2009.

[38] C. M. Hansen, “50 Year with solubility parameters-past and future,” Progress in organic Coating, vol. 51, pp. 77–84, 2004.