# Journal of Advances in Applied Mathematics

### Implementation of a Wiener Chaos Expansion Method for the Numerical Solution of the Stochastic Generalized Kuramoto-Sivashinsky Equation Driven by Brownian Motion Forcing

Download PDF (964.4 KB) PP. 119 - 142 Pub. Date: October 15, 2019

### Author(s)

**Victor Nijimbere**^{*}

Carleton University, Ottawa, Ontario, Canada

### Abstract

### Keywords

### References

[1] M. Alava, M. Dube and M. Rost, “Imbibition in disordered media”, Advances in Physics, Vol. 53, no. 2, 83–175, 2004.

[2] D. Blomker, C. Gugg, M. Raible, “Thin-film growth models: roughness and correlation functions”, European Journal Applied Mathematics, Vol. 13, pp. 385–402, 2002.

[3] E. Bouchbinder, I. Procaccia, S. Santucci and L. Vanel, “Fracture surfaces as multiscaling graphs”, Physical Review Letters, Vol. 96, 2006.

[4] J. Buceta, J. Pastor, M. A. Rubio and F. J. de la Rubia, “The stochastic Kuramoto–Sivashinsky equation: a model for compact electrodeposition growth”, Physical Letters A, Vol. 235, pp. 464–468, 1997.

[5] J. Buceta, J. Pastor, M. A. Rubio and F. J. de la Rubia, “Small scale properties of the stochastic stabilized Kuramoto–Sivashinsky equation”, Physica D, Vol. 113, pp. 166–171, 1998.

[6] R. H. Cameron and W. T. Martin, “The orthogonal development of non-linear functionals in series of Fourier– Hermite functionals”, Annals of Mathathematics, Vol. 48, pp.385–392, 1947.

[7] A. Cuerno, H. A. Makse, S. Tomassone, S. T. Harrington and H. E. Stanley, “Stochastic model for surface erosion via ion sputtering: Dynamical evolution from ripple morphology to rough morphology”, Physical Review Letters, Vol. 75, pp. 4464–4467, 1995.

[8] R. Cuerno and A. L. Barabasi, “Dynamic scaling of ion-sputtemaroon surfaces”, Physical Review Letters”, Vol. 74, no. 23, pp. 4746–4749, 1995.

[9] J. A. Diez and A. G. Gonzalez, “Metallic-thin-film instability with spatially correlated thermal noise”, Physical Review E, Vol. 93, 2016.

[10] P. Gao, C. J. Cai and X. Y. Liu, “Numerical Simulation of Stochastic Kuramoto-Sivashinsky Equation”. Journal of Applied Mathematics and Physics , Vol. 6, pp. 2363–2369, 2018.

[11] G. Grun, K. Mecke and M. Rauscher, “Thin-film flow influenced by thermal noise”, Journal of Statistical Physics, Vol. 122, no. 6, pp. 1261–1294, 2006.

[12] T. Y. Hou, W. Luo, B. Rozovskii and H. M. Zou, “Wiener chaos expansion and numerical solutions of randomly forced equations of fluid mechanics”, Journal of Computational Physics, Vol. 216, pp. 687–706, 2006.

[13] G. Hu, Y. Lou and P. D. Christofides, “Dynamic output feedback covariance control of stochastic dissipative partial differential equations”, Chemical Engineering Science, Vol. 63, pp. 4531–4542, 2008.

[14] G. Hu, G. Orkoulas and P. D. Christofides, “Stochastic modeling and simultaneous regulation of surface roughness and porosity in thin film deposition”, Industrial and Engineering Chemistry research, Vol. 48, pp. 6690– 6700, 2009.

[15] S. Kalliadasis, C. Ruyer-Quil, B. Scheid and M. G. Velarde, “Falling Liquid Films”, in Applied Mathematical Sciences, Vol. 176, Springer, 2012.

[16] R. Mikulevicius and B. L. Rozovskii, “Stochastic Navier-Stokes equations for turbulence”, SIAM Journal of Mathematical Analysis, Vol. 35, pp. 1250–1310, 2004 .

[17] T. Mikosch, “Elementary stochastic calculus with finance in view”, Vol. 6, World Scientific 2004.

[18] S. Nesic, R. Cuerno, E. Moro, L. Kondic, “Fully nonlinear dynamics of stochastic thin-film dewetting”, Physical Review E, Vol. 92, 2015.

[19] V. Nijimbere, “Ionospheric gravity wave interactions and their representation in terms of stochastic partial differential equations”, Ph.D. thesis, Carleton University, 2014.

[20] V. Nijimbere and L. J. Campbell, “A nonlinear time-dependent radiation condition for simulations of internal gravity waves in geophysical fluids”, Applied Numerical Mathematics, Vol. 110, pp. 75–92, 2016.

[21] M. Pradas and A. Hernandez-Machado, “Intrinsic versus superrough anomalous scaling in spontaneous imbibition”, Physical Review E, Vol. 74, 2006.

[22] J. Soriano, A. Mercier, R. Planet, A. Hernandez-Machado, M. A. Rodriguez and J. Ortin, “Anomalous roughening of viscous fluid fronts in spontaneous imbibition”, Physical Review Letters, Vol. 95, 2005.