Isaac Scientific Publishing

Journal of Advances in Applied Mathematics

Modeling Search Patterns in Species: A Brief Survey of Mathematical Methods

Download PDF (606.7 KB) PP. 132 - 138 Pub. Date: April 12, 2016

DOI: 10.22606/jaam.2016.12006

Author(s)

  • Mauricio Tejo*
    Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha
  • Sebastian Niklitschek-Soto
    Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción

Abstract

Search patterns in species can give us relevant information about abundance/lack of its food availability. This survey reviews three marked patterns: the Brownian motion, the Lévy flight and an intermediary displacement. After defining the corresponding mathematical models and some of its properties, we consider a general Euler scheme in which these kind of processes can be simulated. Finally, we discuss some possible implications and future researches.

Keywords

Markov processes; Brownian motion; Lévy flight; Lévy processes; Heavy-tailed distributions; Euler scheme; Likelihood function.

References

[1] N. Humphries, N. Queiroz, J. Dyer, N. Pade, M. Musy, K. Schaefer, D. Fuller, J. Brunnschweiler, T. Doyle, J. Houghton, G. Hays, C. Jones, L. Noble, V. Wearmouth, E. Southall, and D. Sims, “Environmental context explains lévy and brownian movement patterns of marine predators,” Nature, vol. 465, pp. 1066–1069, 2010.

[2] S. Petrovskiia, A. Mashanovab, and V. Jansenb, “Variation in individual walking behavior creates the impression of a lévy flight,” PNAS, vol. 108, no. 21, pp. 8704–8707, 2011.

[3] A. Reynolds and C. Rhodes, “The lévy flight paradigm: random search patterns and mechanisms,” Ecology, vol. 90, no. 4, pp. 877–887, 2009.

[4] G. Viswanathan, “Fish in lévy-flight foraging,” Nature, vol. 465, pp. 1018–1019, 2010.

[5] G. Viswanathan, V. Afanasyev, S. Buldyrev, E. Murphy, P. Prince, and H. Stanley, “Lévy flight search patterns of wandering albatrosses,” Nature, vol. 381, pp. 413–415, 1996.

[6] K. Sato, Lévy Processes and Infinitely Divisible Distributions. Cambridge university press, 1999.

[7] L. Valdivieso, “Likelihood inference in processes of ornstein-uhlenbeck type,” Ph.D. dissertation, Katholieke Universiteit Leuven, Faculteit Wetenschappen, 2007.

[8] J. Jacod, “The euler scheme for lévy driven stochastic differential equations: limit theorems,” The Annals of Probability, vol. 32, no. 3A, pp. 1830–1872, 2004.

[9] R. Darling. (2002) Fluid limits of pure jump markov processes: a practical guide. [Online]. Available: http://arxiv.org/abs/math/0210109

[10] Y. A?t-Sahalia and J. Jacod, “Testing for jumps in a discretely observed process,” The Annals of Statistics, vol. 37, no. 1, pp. 184–222, 2009.

[11] B. S. Raposo, E and, M. da Luz, H. Stanley, and G. Viswanathan, “Dynamical robustness of lévy search strategies,” Physical Review Letters, vol. 91, no. 24, pp. 240 601–1–240 601–4, 2003.

[12] B. S. Raposo, E and, M. da Luz, M. Santos, H. Stanley, and G. Viswanathan, “L?lvy flights and random searches,” Journal of Physics A: Mathematical and Theoretical, vol. 42, pp. 434 003–1–434 003–23, 2009.

[13] G. Viswanathan, S. Buldyrev, S. Havlin, M. da Luz, E. Raposo, and H. Stanley, “Lévy flight search patterns of wandering albatrosses,” Nature, vol. 401, pp. 911–914, 1999.

[14] G. Viswanathan, E. Raposo, and M. da Luz, “Lévy flights and superdiffusion in the context of biological encounters and random searches,” Physics of Life Reviews, vol. 5, pp. 133–150, 2008.